Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The underlying mechanism of object recognition- a fundamental brain ability- has been investigated in various studies. However, balancing between the speed and accuracy of recognition is less explored. Most of the computational models of object recognition are not potentially able to explain the recognition time and, thus, only focus on the recognition accuracy because of two reasons: lack of a temporal representation mechanism for sensory processing and using non-biological classifiers for decision-making processing. Here, we proposed a hierarchical temporal model of object recognition using a spiking deep neural network coupled to a biologically plausible decision-making model for explaining both recognition time and accuracy. We showed that the response dynamics of the proposed model can resemble those of the brain. Firstly, in an object recognition task, the model can mimic human's and monkey's recognition time as well as accuracy. Secondly, the model can replicate different speed-accuracy trade-off regimes as observed in the literature. More importantly, we demonstrated that temporal representation of different abstraction levels (superordinate, midlevel, and subordinate) in the proposed model matched the brain representation dynamics observed in previous studies. We conclude that the accumulation of spikes, generated by a hierarchical feedforward spiking structure, to reach abound can well explain not even the dynamics of making a decision, but also the representations dynamics for different abstraction levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neures.2022.12.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!