CFA: An explainable deep learning model for annotating the transcriptional roles of cis-regulatory modules based on epigenetic codes.

Comput Biol Med

Department of Information Management, National University of Kaohsiung, Kaohsiung University Rd, 811 Kaohsiung, Taiwan. Electronic address:

Published: January 2023

Metazoa gene expression is controlled by modular DNA segments called cis-regulatory modules (CRMs). CRMs can convey promoter/enhancer/insulator roles, generating additional regulation layers in transcription. Experiments for understanding CRM roles are low-throughput and costly. Large-scale CRM function investigation still depends on computational methods. However, existing in silico tools only recognize enhancers or promoters exclusively, thus accumulating errors when considering CRM promoter/enhancer/insulator roles altogether. Currently, no algorithm can concurrently consider these CRM roles. In this research, we developed the CRM Function Annotator (CFA) model. CFA provides complete CRM transcriptional role labeling based on epigenetic profiling interpretation. We demonstrated that CFA achieves high performance (test macro auROC/auPRC = 94.1%/90.3%) and outperforms existing tools in promoter/enhancer/insulator identification. CFA is also inspected to recognize explainable epigenetic codes consistent with previous findings when labeling CRM roles. By considering the higher-order combinations of the epigenetic codes, CFA significantly reduces false-positive rates in CRM transcriptional role annotation. CFA is available at https://github.com/cobisLab/CFA/.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.106375DOI Listing

Publication Analysis

Top Keywords

epigenetic codes
12
crm roles
12
cis-regulatory modules
8
based epigenetic
8
promoter/enhancer/insulator roles
8
crm
8
crm function
8
crm transcriptional
8
transcriptional role
8
cfa
7

Similar Publications

Epigenetic alteration in cervical cancer induced by human papillomavirus.

Int Rev Cell Mol Biol

January 2025

Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México. Electronic address:

The critical role of a subset of Human Papillomavirus in cervical cancer has been widely acknowledged and studied. Despite progress in our understanding of the viral molecular mechanisms of pathogenesis, knowledge of how infection with HPV oncogenic variants progresses from latent infection to incurable cancer has not been completely elucidated. In this paper we reviewed the relationship between HPV infection and epigenetic mechanisms such as histone acetylation and deacetylation, DNA methylation and non-coding RNAs associated with this infection and the carcinogenic process.

View Article and Find Full Text PDF

Leveraging Epigenetic Alterations in Pancreatic Ductal Adenocarcinoma for Clinical Applications.

Semin Cancer Biol

January 2025

Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by late detection and poor prognosis. Recent research highlights the pivotal role of epigenetic alter- ations in driving PDAC development and progression. These changes, in conjunction with genetic mutations, contribute to the intricate molecular landscape of the disease.

View Article and Find Full Text PDF

More than 50% of families with suspected rare monogenic diseases remain unsolved after whole-genome analysis by short-read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare-disease cohort of 98 samples from 41 families, using nanopore sequencing, achieving per sample ∼36× average coverage and 32-kb read N50 from a single flow cell.

View Article and Find Full Text PDF

Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology.

Viruses

January 2025

Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.

Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to joint damage and physical dysfunction. The pathogenesis of RA is highly complex, involving genetic, epigenetic, immune, and metabolic factors, among others. Over the years, research has highlighted the importance of non-coding RNAs (ncRNAs) in regulating gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!