Silk fibroin bioscaffold from Bombyx mori and Antheraea assamensis elicits a distinct host response and macrophage activation paradigm in vivo and in vitro.

Biomater Adv

Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India; Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, India. Electronic address:

Published: February 2023

Biomaterials composed of silk fibroin from both mulberry and non-mulberry silkworm varieties have been investigated for their utility in tissue engineering and drug delivery, but these studies have largely excluded any evaluation of host immune response. The present study compares the macrophage activation response towards mulberry (Bombyx mori, BM) and non-mulberry (Antheraea assamensis, AA) silk types, individually and as a blend (BA) in a partial thickness rat abdominal wall defect model and in vitro primary murine bone marrow-derived macrophage (BMDM) assay. Biologic materials composed of liver extracellular matrix (LECM) and small intestinal submucosa (SIS) ECM that are recognized for constructive tissue remodeling, and polypropylene mesh that is associated with pro-inflammatory macrophage phenotype activation are used as controls in the animal model. The AA silk graft shows a host response similar to SIS with few foreign body multinucleate giant cells, vascularization, high CD206 expression, and high M2-like: M1-like macrophage phenotype ratio. Exposure to AA silk degradation products in vitro induces a higher arginase: iNOS ratio in both naive BMDM and pro-inflammatory activated BMDM; and higher Fizz1: iNOS ratio in pro-inflammatory activated BMDM. These data suggest that the AA silk supports a pro-remodeling macrophage response with potential therapeutic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2022.213223DOI Listing

Publication Analysis

Top Keywords

silk fibroin
8
bombyx mori
8
antheraea assamensis
8
host response
8
macrophage activation
8
macrophage phenotype
8
inos ratio
8
pro-inflammatory activated
8
activated bmdm
8
silk
6

Similar Publications

Silk fiber, produced by the silkworm , is a protein fiber with an excellent mechanical strength and broad biocompatibility. Multiple approaches, including genetic and chemical methods, must be combined to tailor silk fiber properties for wide applications, such as textiles and biomaterials. Genetic code expansion (GCE) is an alternative method to alter proteins' chemical and physical properties by incorporating synthetic amino acids into their primary structures.

View Article and Find Full Text PDF

Review on application of silk fibroin hydrogels in the management of wound healing.

Int J Biol Macromol

January 2025

State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China. Electronic address:

Wounds are regarded as disruptions in the integrity of human skin tissues, and the process of wound healing is often characterized as protracted and complex, primarily due to the potential infection or inflammation caused by microorganisms. The quest for innovative solutions that accelerate wound healing while prioritizing patient safety and comfort has emerged as a focal point. Within this pursuit, silkworm silk fibroin-a natural polymer extracted from silk cocoons-exhibits a distinctive combination of properties including biocompatibility, biodegradability, superior mechanical strength, water absorption, and low immunogenicity, which align closely with the demands of contemporary wound care.

View Article and Find Full Text PDF

Injectable biomimetic hydrogel based on modified chitosan and silk fibroin with decellularized cartilage extracellular matrix for cartilage repair and regeneration.

Int J Biol Macromol

January 2025

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94th, Tianjin 300071, PR China. Electronic address:

Cartilage defect repair remains a challenge for clinicians due to the limited self-healing capabilities of cartilage. Microenvironment-specific biomimetic hydrogels have shown great potential in cartilage regeneration because of their excellent biological properties. In this study, a hydrogel system consisting of p-hydroxybenzene propanoic acid-modified chitosan (PC), silk fibroin (SF) and decellularized cartilage extracellular matrix (DCM) was prepared.

View Article and Find Full Text PDF

The incidence rate and mortality rate of breast cancer remain high, and there is an urgent need for safe and effective drugs. The excellent biological activity of hesperidin (HE) is a potential drug for the treatment of breast cancer. In this study, silk fibroin peptides (SFP) were used as delivery carriers and HE loaded SFP nanofibers (SFP/HE NFs) was prepared.

View Article and Find Full Text PDF

Chronic implantable flexible serpentine probe reveals impaired spatial coding of place cells in epilepsy.

Natl Sci Rev

February 2025

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.

The development of minimally invasive and reliable electrode probes for neural signal recording is crucial for advancing neuroscience and treating major brain disorders. Flexible neural probes offer superior long-term recording capabilities over traditional rigid probes. This study introduces a parylene-based serpentine electrode probe for stable, long-term neural monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!