Background: Peripheral magnetic stimulation (PMS) is emerging as a complement to standard electrical stimulation (ES) of the peripheral nervous system (PNS). PMS may stimulate sensory and motor nerve fibers without the discomfort associated with the ES used for standard nerve conduction studies. The PMS coils are the same ones used in transcranial magnetic stimulation (TMS) and lack focality and selectiveness in the stimulation.

Purpose: This study presents a novel coil for PMS, developed using Flexible technologies, and characterized by reduced dimensions for a precise and controlled targeting of peripheral nerves.

Methods: We performed hybrid electromagnetic (EM) and electrophysiological simulations to study the EM exposure induced by a novel miniaturized coil (or mcoil) in and around the radial nerve of the neuro-functionalized virtual human body model Yoon-Sun, and to estimate the current threshold to induce magnetic stimulation (MS) of the radial nerve. Eleven healthy subjects were studied with the mcoil, which consisted of two 15 mm diameter coils in a figure-of-eight configuration, each with a hundred turns of a 25 μm copper-clad four-layer foil. Sensory nerve action potentials (SNAPs) were measured in each subject using two electrodes and compared with those obtained from standard ES. The SNAPs conduction velocities were estimated as a performance metric.

Results: The induced electric field was estimated numerically to peak at a maximum intensity of 39 V/m underneath the mcoil fed by 70 A currents. In such conditions, the electrophysiological simulations suggested that the mcoil elicits SNAPs originating at 7 mm from the center of the mcoil. Furthermore, the numerically estimated latencies and waveforms agreed with those obtained during the PMS experiments on healthy subjects, confirming the ability of the mcoil to stimulate the radial nerve sensory fibers.

Conclusion: Hybrid EM-electrophysiological simulations assisted the development of a miniaturized coil with a small diameter and a high number of turns using flexible electronics. The numerical dosimetric analysis predicted the threshold current amplitudes required for a suprathreshold peripheral nerve sensory stimulation, which was experimentally confirmed. The developed and now validated computational pipeline will be used to improve the performances (e.g., focality and minimal currents) of new generations of mcoil designs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033376PMC
http://dx.doi.org/10.1002/mp.16148DOI Listing

Publication Analysis

Top Keywords

magnetic stimulation
16
radial nerve
12
nerve
8
electrophysiological simulations
8
miniaturized coil
8
healthy subjects
8
nerve sensory
8
mcoil
7
stimulation
6
pms
5

Similar Publications

Autism spectrum disorder (ASD) is characterized by deficits in social behavior and executive function (EF), particularly in cognitive flexibility. Whether transcranial magnetic stimulation (TMS) can improve cognitive outcomes in patients with ASD remains an open question. We examined the acute effects of prefrontal TMS on cortical excitability and fluid cognition in individuals with ASD who underwent TMS for refractory major depression.

View Article and Find Full Text PDF

Importance: Sleep disorders and mild cognitive impairment (MCI) commonly coexist in older adults, increasing their risk of developing dementia. Long-term tai chi chuan has been proven to improve sleep quality in older adults. However, their adherence to extended training regimens can be challenging.

View Article and Find Full Text PDF

Study of the cortico-anorectal neurophysiology in women with fecal incontinence.

Am J Gastroenterol

January 2025

Gastrointestinal Physiology Laboratory, Department of Surgery, Hospital de Mataró (Universitat Autònoma de Barcelona), Carretera de Cirera s/n 08304, Mataró, Spain.

Background: Fecal incontinence (FI) is a prevalent condition that disproportionately impacts women. Although sphincter biomechanics are well studied, the integrity of the cortico-anal motor pathway remains elusive. We evaluated the cortico-spino-anorectal pathway in women with FI against age-matched (AM-HV) and young healthy (Y-HV) volunteers.

View Article and Find Full Text PDF

BACKGROUND Swallowing is a complex behavior involving the musculoskeletal system and higher-order brain functions. We investigated the effects of different modalities of repetitive transcranial magnetic stimulation (rTMS) on the unaffected hemisphere and observed correlation between suprahyoid muscle activity and cortical activation in unilateral stroke patients when swallowing saliva, based on functional near-infrared spectroscopy (fNIRS). MATERIAL AND METHODS From November 2022 to March 2023, twenty-five patients with unilateral stroke were screened using computed tomography or magnetic resonance imaging and identified via a video fluoroscopic swallow study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!