The localization of sensors in wireless sensor networks has recently gained considerable attention. The existing location methods are based on a one-spot measurement model. It is difficult to further improve the positioning accuracy of existing location methods based on single-spot measurements. This paper proposes two location methods based on multi-spot measurements to reduce location errors. Because the multi-spot measurements model has more measurement equations than the single-spot measurements model, the proposed methods provide better performance than the traditional location methods using one-spot measurement in terms of the root mean square error (RMSE) and Cramer-Rao lower bound (CRLB). Both closed-form and iterative algorithms are proposed in this paper. The former performs suboptimally with less computational burden, whereas the latter has the highest positioning accuracy in attaining the CRLB. Moreover, a novel CRLB for the proposed multi-spot measurements model is also derived in this paper. A theoretical proof shows that the traditional CRLB in the case of single-spot measurements performs worse than the proposed CRLB in the case of multi-spot measurements. The simulation results show that the proposed methods have a lower RMSE than the traditional location methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737464PMC
http://dx.doi.org/10.3390/s22239559DOI Listing

Publication Analysis

Top Keywords

location methods
20
measurements model
16
multi-spot measurements
16
methods based
12
single-spot measurements
12
wireless sensor
8
sensor networks
8
measurements
8
existing location
8
one-spot measurement
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!