Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The operational and technological structures of radio access networks have undergone tremendous changes in recent years. A displacement of priority from capacity-coverage optimization (to ensure data freshness) has emerged. Multiple radio access technology (multi-RAT) is a solution that addresses the exponential growth of traffic demands, providing degrees of freedom in meeting various performance goals, including energy efficiencies in IoT networks. The purpose of the present study was to investigate the possibility of leveraging multi-RAT to reduce each user's transmission delay while preserving the requisite quality of service (QoS) and maintaining the freshness of the received information via the age of information (AoI) metric. First, we investigated the coordination between a multi-hop network and a cellular network. Each IoT device served as an information source that generated packets (transmitting them toward the base station) and a relay (for packets generated upstream). We created a queuing system that included the network and MAC layers. We propose a framework comprised of various models and tools for forecasting network performances in terms of the end-to-end delay of ongoing flows and AoI. Finally, to highlight the benefits of our framework, we performed comprehensive simulations. In discussing these numerical results, insights regarding various aspects and metrics (parameter tuning, expected QoS, and performance) are made apparent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735455 | PMC |
http://dx.doi.org/10.3390/s22239455 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!