A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

LPAI-A Complete AIoT Framework Based on LPWAN Applicable to Acoustic Scene Classification Scenarios. | LitMetric

Deploying artificial intelligence on edge nodes of Low-Power Wide Area Networks can significantly reduce network transmission volumes, event response latency, and overall network power consumption. However, the edge nodes in LPWAN bear limited computing power and storage space, and researchers have found it challenging to improve the recognition capability of the nodes using sensor data from the environment. In particular, the domain-shift problem in LPWAN is challenging to overcome. In this paper, a complete AIoT system framework referred to as LPAI is presented. It is the first generic framework for implementing AIoT technology based on LPWAN applicable to acoustic scene classification scenarios. LPAI overcomes the domain-shift problem, which enables resource-constrained edge nodes to continuously improve their performance using real data to become more adaptive to the environment. For efficient use of limited resources, the edge nodes independently select representative data and transmit it back to the cloud. Moreover, the model is iteratively retrained on the cloud using the few-shot uploaded data. Finally, the feasibility of LPAI is analyzed, and simulation experiments on the public ASC dataset provide validation that our proposed framework can improve the recognition accuracy by as little as 5% using 85 actual sensor data points.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735586PMC
http://dx.doi.org/10.3390/s22239404DOI Listing

Publication Analysis

Top Keywords

edge nodes
16
complete aiot
8
based lpwan
8
lpwan applicable
8
applicable acoustic
8
acoustic scene
8
scene classification
8
classification scenarios
8
improve recognition
8
sensor data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!