A Modularized IoT Monitoring System with Edge-Computing for Aquaponics.

Sensors (Basel)

College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China.

Published: November 2022

AI Article Synopsis

Article Abstract

Aquaponics is a green and efficient agricultural production model that combines aquaculture and vegetable cultivation. It is worth looking into optimizing the proportion of fish and plants to improve the quality and yield. However, there is little non-destructive monitoring of plant growth in aquaponics monitoring systems currently. In this paper, based on the Internet of Things technologies, a monitoring system is designed with miniaturization, modularization, and low-cost features for cultivation-breeding ratio research. The system can realize remote monitoring and intelligent control of parameters needed to keep fish and plants under optimal conditions. First, a 32-bit chip is used as the Microcontroller Unit to develop the intelligent sensing unit, which can realize 16 different data acquisitions as stand-alone extensible modules. Second, to achieve plant data acquisition and upload, the Raspberry Pi embedded with image processing algorithms is introduced to realize edge-computing. Finally, all the collected data is stored in the Ali-cloud through Wi-Fi and a WeChat Mini Program is designed to display data and control devices. The results show that there is no packet loss within 90 m for wireless transmission, and the error rate of environment parameters is limited to 5%. It was proven that the system is intelligent, flexible, low-cost, and stable which is suitable for small-scale aquaponics well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739085PMC
http://dx.doi.org/10.3390/s22239260DOI Listing

Publication Analysis

Top Keywords

monitoring system
8
fish plants
8
monitoring
5
modularized iot
4
iot monitoring
4
system
4
system edge-computing
4
aquaponics
4
edge-computing aquaponics
4
aquaponics aquaponics
4

Similar Publications

Background: The prevalence of stroke is high in both males and females, and it rises with age. Stroke often leads to sensor and motor issues, such as hemiparesis affecting one side of the body. Poststroke patients require torso stabilization exercises, but maintaining proper posture can be challenging due to their condition.

View Article and Find Full Text PDF

A change language for ontologies and knowledge graphs.

Database (Oxford)

January 2025

Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, United States.

Ontologies and knowledge graphs (KGs) are general-purpose computable representations of some domain, such as human anatomy, and are frequently a crucial part of modern information systems. Most of these structures change over time, incorporating new knowledge or information that was previously missing. Managing these changes is a challenge, both in terms of communicating changes to users and providing mechanisms to make it easier for multiple stakeholders to contribute.

View Article and Find Full Text PDF

With the increasing height and rotor diameter of wind turbines, bat activity monitoring within the risk area becomes more challenging. This study investigates the impact of Unmanned Aerial Systems (UAS) on bat activity and explores acoustic bat detection via UAS as a new data collection method in the vicinity of wind turbines. We tested two types of UAS, a multicopter and a Lighter Than Air (LTA) UAS, to understand how they may affect acoustically recorded and analyzed bat activity level for three echolocation groups: Pipistrelloid, Myotini, and Nyctaloid.

View Article and Find Full Text PDF

For optimizing production yield while limiting negative environmental impact, sustainable agriculture benefits from real-time, on-the-spot chemical analysis of soil at low cost. Colorimetric paper sensors are ideal candidates, however, their automated readout and analysis in the field is needed. Using mobile technology for paper sensor readout could, in principle, enable the application of machine-learning models for transforming colorimetric data into threshold-based classes that represent chemical concentration.

View Article and Find Full Text PDF

Background: Among cardiovascular diseases, adult patients with congenital heart disease represent a population that has been continuously increasing, which is mainly due to improvement of the pathophysiological framing, including the development of surgical and reanimation techniques. However, approximately 20% of these patients will require surgery in adulthood and 40% of these cases will necessitate reintervention for residual defects or sequelae of childhood surgery. In this field, cardiac rehabilitation (CR) in the postsurgical phase has an important impact on the patient by improving psychophysical and clinical recovery in reducing fatigue and dyspnea to ultimately increase survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!