Lower-limb exoskeletons, regardless of their control strategies, have been shown to alter a user's gait just by the exoskeleton's own mass and inertia. The characterization of these differences in joint kinematics and kinetics under exoskeleton-like added mass is important for the design of such devices and their control strategies. In this study, 19 young, healthy participants walked overground at self-selected speeds with six added mass conditions and one zero-added-mass condition. The added mass conditions included +2/+4 lb on each shank or thigh or +8/+16 lb on the pelvis. OpenSim-derived lower-limb sagittal-plane kinematics and kinetics were evaluated statistically with both peak analysis and statistical parametric mapping (SPM). The results showed that adding smaller masses (+2/+8 lb) altered some kinematic and kinetic peaks but did not result in many changes across the regions of the gait cycle identified by SPM. In contrast, adding larger masses (+4/+16 lb) showed significant changes within both the peak and SPM analyses. In general, adding larger masses led to kinematic differences at the ankle and knee during early swing, and at the hip throughout the gait cycle, as well as kinetic differences at the ankle during stance. Future exoskeleton designs may implement these characterizations to inform exoskeleton hardware structure and cooperative control strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738556PMC
http://dx.doi.org/10.3390/s22239177DOI Listing

Publication Analysis

Top Keywords

kinematics kinetics
12
control strategies
12
joint kinematics
8
mass conditions
8
gait cycle
8
adding larger
8
larger masses
8
differences ankle
8
mass
5
kinetics change
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!