This paper presents a monitoring system designed to increase the safety of the quay structure in ferry terminals, in which, during berthing and unberthing maneuvers, propeller and thruster-generated jets may damage the seabed protection, threatening the stability of the berth structure. Direct measurement of flow velocity on the seabed is not possible due to the possibility of its damage, therefore dynamic pressure measurement of the quay wall was used within the system. The relationship between the pressure on the quay wall and flow velocity on the seabed was determined using real-scale CFD simulation of the flow field generated during berthing and unberthing maneuvers. The paper focuses on the computations of the pressure distribution generated by bow thrusters. These computations made it possible to determine the velocity field in the time domain. Their results, verified using real-scale measurements, are in line with generally accepted empirical methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739541 | PMC |
http://dx.doi.org/10.3390/s22239133 | DOI Listing |
Sensors (Basel)
November 2022
Faculty of Navigation, Gdynia Maritime University, 81-225 Gdynia, Poland.
This paper presents a monitoring system designed to increase the safety of the quay structure in ferry terminals, in which, during berthing and unberthing maneuvers, propeller and thruster-generated jets may damage the seabed protection, threatening the stability of the berth structure. Direct measurement of flow velocity on the seabed is not possible due to the possibility of its damage, therefore dynamic pressure measurement of the quay wall was used within the system. The relationship between the pressure on the quay wall and flow velocity on the seabed was determined using real-scale CFD simulation of the flow field generated during berthing and unberthing maneuvers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!