A Wireless Real-Time Continuous Monitoring System for the Internal Movements of Mountain Glaciers Using Sensor Networks.

Sensors (Basel)

State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Published: November 2022

With the escalation of global warming, the shrinkage of mountain glaciers has accelerated globally, the water volume from glaciers has changed, and relative disasters have increased in intensity and frequency (for example, ice avalanches, surging glaciers, and glacial lake outburst floods). However, the wireless monitoring of glacial movements cannot currently achieve omnidirectional, high-precision, real-time results, since there are some technical bottlenecks. Based on wireless networks and sensor application technologies, this study designed a wireless monitoring system for measuring the internal parameters of mountain glaciers, such as temperature, pressure, humidity, and power voltage, and for wirelessly transmitting real-time measurement data. The system consists of two parts, with a glacier internal monitoring unit as one part and a glacier surface base station as the second part. The former wirelessly transmits the monitoring data to the latter, and the latter processes the received data and then uploads the data to a cloud data platform via 4G or satellite signals. The wireless system can avoid cable constraints and transmission failures due to breaking cables. The system can provide more accurate field-monitoring data for simulating glacier movements and further offers an early warning system for glacial disasters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741055PMC
http://dx.doi.org/10.3390/s22239061DOI Listing

Publication Analysis

Top Keywords

mountain glaciers
12
monitoring system
8
wireless monitoring
8
system
6
data
6
wireless
5
monitoring
5
glaciers
5
wireless real-time
4
real-time continuous
4

Similar Publications

Glacier-fed streams (GFS) feature among Earth's most extreme aquatic ecosystems marked by pronounced oligotrophy and environmental fluctuations. Microorganisms mainly organize in biofilms within them, but how they cope with such conditions is unknown. Here, leveraging 156 metagenomes from the Vanishing Glaciers project obtained from sediment samples in GFS from 9 mountains ranges, we report thousands of metagenome-assembled genomes (MAGs) encompassing prokaryotes, algae, fungi and viruses, that shed light on biotic interactions within glacier-fed stream biofilms.

View Article and Find Full Text PDF

Globally scalable glacier mapping by deep learning matches expert delineation accuracy.

Nat Commun

January 2025

Department of Earth Observation Science, Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, Overijssel, The Netherlands.

Accurate global glacier mapping is critical for understanding climate change impacts. Despite its importance, automated glacier mapping at a global scale remains largely unexplored. Here we address this gap and propose Glacier-VisionTransformer-U-Net (GlaViTU), a convolutional-transformer deep learning model, and five strategies for multitemporal global-scale glacier mapping using open satellite imagery.

View Article and Find Full Text PDF

Unlabelled: Glacier-fed streams are permanently cold, ultra-oligotrophic, and physically unstable environments, yet microbial life thrives in benthic biofilm communities. Within biofilms, microorganisms rely on secondary metabolites for communication and competition. However, the diversity and genetic potential of secondary metabolites in glacier-fed stream biofilms remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The rapid melting of mountain glaciers, a sign of climate change, threatens unique ecosystems known as glacier-fed streams (GFSs), which are primarily dominated by microbial life.
  • Using advanced techniques like metabarcoding and metagenomics, researchers conducted a detailed study of the bacterial microbiome in 152 GFSs across major mountain ranges, revealing distinct taxonomic and functional differences compared to other cryospheric microbiomes.
  • The findings highlight the importance of geographic isolation and environmental factors in shaping bacterial diversity, underscoring the urgent need for further research due to the risks posed by climate change to this unique ecosystem.
View Article and Find Full Text PDF

The elemental dynamics and interactions within deadwood profoundly influence carbon sequestration and nutrient cycling in forest ecosystems. Recent studies have investigated macronutrient cycling during deadwood decay of specific plants, yet the dynamics and interactions of micronutrients, trace elements, and the elementome across species and decay stages remain unexplored. Here, we investigated the elementome and their coupling relationships across five decay stages of downed deadwood (DDW) from four dominant species (Hippophae rhamnoides, Populus purdomii, Abies fabri, and Picea brachytyla) along the Hailuogou Glacier primary successional chronosequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!