In this paper, we present dual responsive one-dimensional (1D) photonic crystal (PC) multilayer films that utilize a high-humidity environment and temperature. Dual responsive 1D PC multilayer films are fabricated on precoated thermochromic film by sequential alternate layer deposition of photo-crosslinkable poly(2-vinylnaphthalene-co-benzophenone acrylate) (P(2VN-co-BPA)) as a high refractive index polymer, and poly(4-vinylpyrollidone-co-benzophenone acrylate) P(4VP-co-BPA) as a low refractive index polymer. The thermochromic film shows a vivid color transition from black to white at 28 °C. Three different colors of thermochromic 1D PC multilayer films are prepared by thickness modulation of P(4VP-co-BPA) layers, and the films on a black background exhibit visible spectrum color only in a high-humidity environment (over 90% relative humidity (RH)). For the three films placed on a hands display, three different composite colors are synthesized by the reflection of light, including yellow, magenta, and cyan, due to the changing of backgrounds from black to white with temperature. Additionally, the films show remarkable color transitions with reliable reversibility. The films can be applied as anti-counterfeiting labels and can be used for smart decoration films. To the best of our knowledge, this is the first report of dual response colorimetric films that change color in various ways depending on temperature and humidity changes, and we believe that it can be applied to various applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735666PMC
http://dx.doi.org/10.3390/polym14235330DOI Listing

Publication Analysis

Top Keywords

multilayer films
16
dual responsive
12
films
10
photonic crystal
8
crystal multilayer
8
high-humidity environment
8
thermochromic film
8
refractive polymer
8
black white
8
color
5

Similar Publications

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Self-Assembling of Multilayered Polymorphs with Ion Beams.

Nano Lett

January 2025

Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.

Polymorphism determines significant variations in materials' properties by lattice symmetry variation. If they are stacked together into multilayers, polymorphs may work as an alternative approach to the sequential deposition of layers with different chemical compositions. However, selective polymorph crystallization during conventional thin film synthesis is not trivial; changes of temperature or pressure when switching from one polymorph to another during synthesis may cause degradation of the structural quality.

View Article and Find Full Text PDF

Multilayer Graphene Stacked with Silver Nanowire Networks for Transparent Conductor.

Materials (Basel)

January 2025

Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.

A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.

View Article and Find Full Text PDF

W/WO/TiO Multilayer Film with Elevated Electrochromic and Capacitive Properties.

Materials (Basel)

January 2025

College of Physics and Electronic Information, Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.

Electrochromic capacitors, which are capable of altering their appearances in line with their charged states, are drawing substantial attention from both academia and industry. Tungsten oxide is usually used as an electrochromic layer material for electrochromic devices, or as an active material for high-performance capacitor electrodes. Despite this, acceptable visual aesthetics in electrochromic capacitors have almost never been achieved using tungsten oxide, because, in its pure form, this compound only displays a onefold color modulation from transparent to blue.

View Article and Find Full Text PDF

Innovative Blown Multi-Micro-Nano-Layer Coextrusion: Insights into Rheology and Process Stability.

Polymers (Basel)

December 2024

CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France.

The present study introduces an innovative blown coextrusion die technology designed to address a critical gap in the production of multilayer films. Unlike conventional systems, this novel die allows for the creation of films with a high number of layers, ensuring layer integrity even in the micro-nano scale. A key advancement of this die is its ability to increase the number of layers without extending the residence time since it does not require an additional multiplier element.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!