Ionic conductive hydrogels used as flexible wearable sensor devices have attracted considerable attention because of their easy preparation, biocompatibility, and macro/micro mechanosensitive properties. However, developing an integrated conductive hydrogel that combines high mechanical stability, strong adhesion, and excellent mechanosensitive properties to meet practical requirements remains a great challenge owing to the incompatibility of properties. Herein, we prepare a multifunctional ionic conductive hydrogel by introducing high-modulus bacterial cellulose (BC) to form the skeleton of double networks, which exhibit great mechanical properties in both tensile (83.4 kPa, 1235.9% strain) and compressive (207.2 kPa, 79.9% strain) stress-strain tests. Besides, the fabricated hydrogels containing high-concentration Ca show excellent anti-freezing (high ionic conductivities of 1.92 and 0.36 S/m at room temperature and -35 ∘C, respectively) properties. Furthermore, the sensing mechanism based on the conductive units and applied voltage are investigated to the benefit of the practical applications of prepared hydrogels. Therefore, the designed and fabricated hydrogels provide a novel strategy and can serve as candidates in the fields of sensors, ionic skins, and soft robots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739927 | PMC |
http://dx.doi.org/10.3390/polym14235316 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Fudan University, 2005 Huhu Rd, Shanghai, CHINA.
All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
National University of Singapore, Chemistry, 3 Science Drive 3, 117543, Singapore, SINGAPORE.
Achieving high ionic conductivity and stable performance at low temperatures remains a significant challenge in sodium-metal batteries (SMBs). In this study, we propose a novel electrolyte design strategy that elucidates the solvation structure-function relationship within mixed solvent systems. A mixture of diglyme and 1,3-dioxolane was developed to optimize the solvation structure towards superior low-temperature electrolyte.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
Highly ion-conductive solid electrolytes of nonlithium ions (sodium or potassium ions) are necessary for pursuing a more cost-effective and sustainable energy storage. Here, two classes of sulfonated -NH-linked covalent organic frameworks (COFs), specifically designed for sodium or potassium ion conduction (named i-COF-2 (Na or K) and i-COF-3 (Na or K)), were synthesized through a straightforward, one-step process using affordable starting materials. Remarkably, these COFs demonstrate high ionic conductivity at room temperature─3.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN, United States. Electronic address:
The overall objective of the present work was to quantify how shear, coupled with varying salt concentration, affected the particle size distribution and relaxation/aggregation behavior for various organic sources of nonliving natural organic matter (NNOM) in surface water. NNOM has been implicated as a conditioning agent leading to the formation of biofilms such as algae. NNOM is also a responsible in surface waters for facilitated transport of a variety of anthropogenic pollutants.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi P.O. Box 9177948944, Iran. Electronic address:
Protein fibrillation complex mechanisms led to an emerging trend in research for years. The mechanisms behind whey protein isolate (WPI) fibrillation driven by divalent cations remained still a matter of speculation. All cations (Ca, Fe, Mg, and Zn) enhanced the microenvironment polarity through π-π stacking, and the amide I and II shifts confirmed the fibrillation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!