Poly (vinylidene fluoride) membranes were prepared by freeze-casting. The effects of PVDF concentration, and freezing temperature on the morphology, crystallization, and performance of prepared membranes were examined. Polymer concentration was varied from 10 to 25 wt%. The freezing temperature was varied from -5 to -25 °C. Dimethyl sulfoxide (DMSO) and distilled water were used as solvents and non-solvents, respectively. The first step of this study was devoted to estimating the optimal concentration of PVDF solution in DMSO. Membranes prepared at different ratios were characterized using physical and mechanical characteristics and porosity. The second step was to optimize the time required for the production of the membranes. In the third step, it was shown that the freezing temperature had a remarkable effect on the morphology of the membranes: as the temperature decreases, there is a transition from spherulite structures to interconnected pores. It was shown that the diversity in the pore pattern for PVDF affects remarkably the water permeability through the polymer membrane. During the monitoring of the spread of crystallized areas during the formation of the membrane, it was found that the crystallization of the solvent begins at localized points of the microscale, further crystallized areas spread radially or unevenly along the surface of the solution, forming contact borders, which can lead to changes in the properties of the membrane in its area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736028 | PMC |
http://dx.doi.org/10.3390/polym14235283 | DOI Listing |
Adv Mater
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
The critical challenges in developing ultralow-temperature proton-based energy storage systems are enhancing the diffusion kinetics of charge carriers and inhibiting water-triggered interfacial side reactions between electrolytes and electrodes. Here an acid-salt hybrid electrolyte with a stable anion-cation-HO solvation structure that realizes unconventional proton transport at ultralow temperature is shown, which is crucial for electrodes and devices to achieve high rate-capacity and stable interface compatibility with electrodes. Through multiscale simulations and experimental investigations in the electrolyte employing ZnCl introduced into 0.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
Gel electrolytes have emerged as a promising solution for enhancing the performance of zinc-ion batteries (ZIBs), particularly in flexible devices. However, they face challenges such as low-temperature inefficiency, constrained ionic conductivity, and poor mechanical strength. To address these issues, this study presents a novel PAMCD gel electrolyte with tunable freezing point and mechanical properties for ZIBs, blending the high ionic conductivity of polyacrylamide with the anion interaction capability of β-cyclodextrin.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Techniques for sperm cryopreservation have exhibited their potential in male fertility preservation. The use of frozen-thawed sperm in fertilization (IVF) cycles is widespread today. However, many studies reported that cryopreservation might have adverse effects on sperm DNA integrity, motility, and fertilization, probably due to cold shock, intra- and extracellular ice crystals, and excess reactive oxygen species (ROS).
View Article and Find Full Text PDFBMC Mol Cell Biol
December 2024
Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, K7L 3N6, Canada.
Alanine-rich, alpha-helical type I antifreeze proteins (AFPs) in fishes are thought to have arisen independently in the last 30 Ma on at least four occasions. This hypothesis has recently been proven for flounder and sculpin AFPs, which both originated by gene duplication and divergence followed by substantial gene copy number expansion. Here, we examined the origins of the cunner (wrasse) and snailfish (liparid) AFPs.
View Article and Find Full Text PDFPol J Vet Sci
September 2024
Department of Clinics, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal-637 001, India.
The aim of this study was to assess the in vitro penetration rate of antioxidant enriched frozen thawed Kangayam bull semen. For the current investigation, 5-7-year-old Kangayam bulls were used. The semen was collected twice per week and two ejaculates were collected each time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!