A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DMA of TPU Films and the Modelling of Their Viscoelastic Properties for Noise Reduction in Jet Engines. | LitMetric

DMA of TPU Films and the Modelling of Their Viscoelastic Properties for Noise Reduction in Jet Engines.

Polymers (Basel)

Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, Hol-beinstraße 3, 01307 Dresden, Germany.

Published: December 2022

Due to current developments in jet engine design, the acoustic performance of conventional acoustic liners needs to be improved with respect to lower frequency spectrums and broadband absorption. In this context, the present study aimed to determine the viscoelastic material properties of a thermoplastic polyurethane (TPU) film for targeted application in novel acoustic liners with integrated film material for enhanced noise reduction. Therefore, a dynamic mechanical analysis (DMA) was performed to determine these viscoelastic material properties. Based on the acquired data, the time-temperature shift (TTS) was applied to obtain the material's temperature- and frequency-dependent mechanical properties. In this regard, the William-Landel-Ferry (WLF) method and an alternative polynomial approach determining the shift factors were investigated and compared. Furthermore, a generalized Maxwell model-so-called Prony-series-with and without pre-smoothing utilizing of a fractional rheological model was applied to approximate the measured storage and loss modulus and to provide a material model that can be used in finite element analyses. Finally, the results were discussed concerning the application of the films in acoustic liners under the conditions of a standard flight cycle and the applied loads. The present investigations thus provide a method for characterizing polymer materials, approximating their mechanical behavior for vibration applications at different ambient temperatures and enabling the identification of their operational limits during the application in acoustic liners.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740051PMC
http://dx.doi.org/10.3390/polym14235285DOI Listing

Publication Analysis

Top Keywords

acoustic liners
16
noise reduction
8
determine viscoelastic
8
viscoelastic material
8
material properties
8
acoustic
5
dma tpu
4
tpu films
4
films modelling
4
modelling viscoelastic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!