Chitin nanofibrils (CN) can be obtained from crustaceans and fungal sources and can be used for preparing coatings for bioplastic films, that are fundamental for developing a safe and sustainable biodegradable food packaging. Coatings with different concentrations of CN from shrimps were applied on different bioplastic substrates, like Poly (butylene succinate-co-adipate)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PBSA/PHBV) blend, Polybutylene succinate (PBS), and Polybutylene adipate terephthalate/Poly(lactic acid) (PBAT/PLA) blend, but the adhesion to the substrates was scarce. On the contrary, the fungal-based CN showed a better adhesion. Additionally, it was found that the use of an additive based on oligomeric lactic acid was useful to prepare a coating with an improved adhesion to bioplastics. The gas barrier properties to oxygen and water vapour of coated and un-coated films were measured, revealing an improvement of these properties thanks to applied coatings, especially towards the oxygen. Antimicrobial properties and biodegradation capacity were also evaluated revealing an antibacterial effect of the coatings that did not significantly interfere with their biodegradability. The results are discussed and interpreted considering the correlation between composition and macromolecular structures with the observed functional properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737123 | PMC |
http://dx.doi.org/10.3390/polym14235211 | DOI Listing |
Int J Pharm
January 2025
Clinical Center for Tumor Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China. Electronic address:
The therapeutic outcomes of medications were restricted by the colonic mucosal barrier during the treatment of colorectal cancer (CRC). Micro/nanomotors can overcome the mucus barriers to reach deep colorectal tumors. In this study, we constructed a novel microsized PLGA-Pt micromotor (MM) driven by hydrogen peroxide (HO) to enhance drug delivery to the CRC tissues and achieve effective antitumor therapy.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India. Electronic address:
Plant protein-based edible film and coatings have emerged as eco-friendly alternatives to synthetic packaging, offering biodegradable, non-toxic solutions. Their biocompatibility and film-forming properties make them suitable for direct application on food products, reducing reliance on non-degradable plastics and lowering environmental pollution. Despite their promising advantages, challenges remain in optimizing mechanical properties, production scalability, and consumer acceptance.
View Article and Find Full Text PDFNutrients
December 2024
Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy.
Aims: This study explores the link between body mass index (BMI), intestinal permeability, and associated changes in anthropometric and impedance parameters, lipid profiles, inflammatory markers, fecal metabolites, and gut microbiota taxa composition in participants having excessive body mass.
Methods: A cohort of 58 obese individuals with comparable diet, age, and height was divided into three groups based on a priori clustering analyses that fit with BMI class ranges: Group I (25-29.9), Group II (30-39.
Materials (Basel)
January 2025
Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.
A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.
Poly(glycolic acid) (PGA) is a rapidly degradable polymer mainly used in medical applications, attributed to its relatively high cost. Reducing its price will boost its utilization in a wider range of application fields, such as gas barriers and shale gas extraction. This article presents a strategy that utilizes recycled PGA as a raw material alongside typical carbon nanomaterials, such as graphene oxide nanosheets (GO) and carbon nanotubes (CNTs), to produce low-cost, fully degradable yarns via electrospinning and twisting techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!