Fabrication of tailor-made materials requires meticulous planning, use of technical equipments, major components and suitable additives that influence the end application. Most of the processes of separation/transport/adsorption have environmental applications that demands a material to be with measurable porous nature, stability (mechanical, thermal) and morphology. Researchers say that a vital role is played by porogens in this regard. Porogens (i.e., synthetic, natural, mixed) and their qualitative and quantitative influence on the substrate material (polymers (bio, synthetic), ceramic, metals, etc.) and their fabrication processes are summarized. In most cases, porogens critically influence the morphology, performance, surface and cross-section, which are directly linked to material efficiency, stability, reusability potential and its applications. However, currently there are no review articles exclusively focused on the porogen pores' role in material fabrication in general. Accordingly, this article comprises a review of the literature on various types of porogens, their efficiency in different host materials (organic, inorganic, etc.), pore size distribution (macro, micro and nano), their advantages and limitations, to a certain extent, and their critical applications. These include separation, transport of pollutants, stability improvement and much more. The progress made and the remaining challenges in porogens' role in the material fabrication process need to be summarized for researcher's attention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736489PMC
http://dx.doi.org/10.3390/polym14235209DOI Listing

Publication Analysis

Top Keywords

material fabrication
12
role material
8
material
6
porogens
5
fabrication
5
emerging trends
4
trends porogens
4
porogens material
4
fabrication progresses
4
progresses challenges
4

Similar Publications

A thermochromic pigment, derived from reaction of ethylenediamine and rhodamine B known as MA-RB, has been successfully developed. This pigment showcases temperature-controlled visible color-transformation properties in both solid and solution states. The thermochromic pigment MA-RB exhibits a notable color change from light pink to rose red, triggered by thermal excitation.

View Article and Find Full Text PDF

Tin sulphide compounds (SnS, x = 1, 2) are potential anode materials for potassium-ion batteries (PIBs) due to their characteristic layered structure, high theoretical capacity, non-toxicity and low production cost. However, they suffer from significant volume changes resulting in poor performance of such anodes. In this work incorporation of SnS into the carbon structure was expected to overcome these disadvantages.

View Article and Find Full Text PDF

Background: The success of a restoration largely depends on the quality of its fit. This study aimed to investigate the fit quality of monolithic zirconia veneers (MZVs) produced through traditional and digital workflows.

Methods: A typodont maxillary right central incisor was prepared.

View Article and Find Full Text PDF

Interfacial functionalization and capillary force welding of enhanced silver nanowire-cellulose nanofiber composite electrodes for electroluminescent devices.

Int J Biol Macromol

December 2024

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.

The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.

View Article and Find Full Text PDF

Eco-friendly cellulose paper composites: A sustainable solution for EMI shielding and green engineering applications.

Int J Biol Macromol

December 2024

International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala 686 560, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India; School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O.Box 17011, Doornfontein, 2028 Johannesburg, South Africa; Trivandrum Engineering, Science and Technology (TrEST) Research Park, Trivandrum 695016, India. Electronic address:

Cellulose paper-based composites represent a promising and sustainable alternative for electromagnetic interference (EMI) shielding applications. Derived from renewable and biodegradable cellulose fibers, these composites are enhanced with conductive fillers namely carbon nanotubes, graphene, or metallic nanoparticles, achieving efficient EMI shielding while maintaining environmental friendliness. Their lightweight, flexible nature, and mechanical robustness make them ideal for diverse applications, including wearable electronics, flexible circuits, and green electronics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!