An integrated and feasible approach was proposed using the underutilized grass fibre (stem) derived from Napier grass and sugarcane for paper production in this study. To enhance paper strength, pre-hydrolysis and beating techniques have been used to improve the chemical pulps and mechanical pulping process, respectively. Napier grass and sugarcane are promising non-wood sources for pulp production, owing to their high cellulose and low lignin and extractive content. With the additional mild alkaline pre-treatment to the mechanical pulping process, the lignin content was greatly reduced. The results reveal that the mechanical pulping with alkaline pre-treatment may indeed potentially replace the most prevalent pulping process (chemical pulping). As evidenced by the paper strength properties, mechanical pulping is far more suitable for grass-type biomass, particularly Napier grass, which had a folding endurance capability five times greater than chemical pulping. Furthermore, the remaining high hemicellulose content from mechanical pulping contributed to a high pulp yield, while also facilitating the fibrillation on the sugarcane's laboratory paper handsheet. The findings also demonstrated that the additional beating process from chemical pulping causes the fibres to be drawn toward each other, resulting in a more robust fibre network that contributes to good paper strength. Consequently, this work sheds new light on the development of advanced paper derived from grass fibre.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736732PMC
http://dx.doi.org/10.3390/polym14235203DOI Listing

Publication Analysis

Top Keywords

mechanical pulping
20
grass fibre
12
napier grass
12
paper strength
12
pulping process
12
chemical pulping
12
pulping
9
underutilized grass
8
fibre stem
8
paper production
8

Similar Publications

The finite element method (FEM) is an advanced numerical technique that can be applied in orthodontics to study tooth movements, stresses, and deformations that occur during orthodontic treatment. It is also useful for simulating and visualizing the biomechanical behavior of teeth, tissues, and orthodontic appliances in various clinical scenarios. The objective of this research was to analyze the mechanical behavior of teeth, tissues, and orthodontic appliances in various clinical scenarios.

View Article and Find Full Text PDF

Nanostructural Analysis of Age-Related Changes Affecting Human Dentin.

Calcif Tissue Int

January 2025

Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan.

Human dentin performs its function throughout life, even though it is not remodeled like bone. Therefore, dentin must have extreme durability against daily repetitive loading. Elucidating its durability requires a comprehensive understanding of its shape, structure, and anisotropy at various levels of its structure.

View Article and Find Full Text PDF

Due to the scarcity of wood in some countries, it is necessary to replace it with other raw materials and at the same time use the waste material. The aim of this research is to use poppy waste straw for the efficient conversion of possible lignocellulosic materials - pulps and particleboards. Their suitability for the production of composites is assessed on the basis of selected physical or mechanical properties.

View Article and Find Full Text PDF

Genetic improvement of low-lignin poplars: a new strategy based on molecular recognition, chemical reactions and empirical breeding.

Physiol Plant

December 2024

Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.

As an important source of pollution in the papermaking process, the presence of lignin in poplar can seriously affect the quality and process of pulping. During lignin synthesis, Caffeoyl-CoA-O methyltransferase (CCoAOMT), as a specialized catalytic transferase, can effectively regulate the methylation of caffeoyl-coenzyme A (CCoA) to feruloyl-coenzyme A. Targeting CCoAOMT, this study investigated the substrate recognition mechanism and the possible reaction mechanism, the key residues of lignin binding were mutated and the lignin content was validated by deep convolutional neural-network model based on genome-wide prediction (DCNGP).

View Article and Find Full Text PDF

Mandibular bone defect healing using polylactic acid-nano-hydroxyapatite-gelatin scaffold loaded with hesperidin and dental pulp stem cells in rat.

Tissue Cell

December 2024

Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan. Electronic address:

Addressing mandibular defects poses a significant challenge in maxillofacial surgery. Recent advancements have led to the development of various biomimetic composite scaffolds aimed at facilitating mandibular defect reconstruction. This study aimed to assess the regenerative potential of a novel composite scaffold consisting of polylactic acid (PLA), hydroxyapatite nanoparticles (n-HA), gelatin, hesperidin, and human dental pulp stem cells (DPSCs) in a rat model of mandibular bone defect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!