The safety concern arising from flammable liquid electrolytes used in batteries and supercapacitors drives technological advances in solid polymer electrolytes (SPEs) in which flammable organic solvents are absent. However, there is always a trade-off between the ionic conductivity and mechanical properties of SPEs due to the lack of interaction between the ionic liquid and polymer resin. The inadequate understanding of SPEs also limits their future exploitation and applications. Herein, we provide a complete approach to develop a new SPE, consisting of a cation (monomer), anion and hardener from ions-monomers using molecular dynamics (MD) simulations. The results show that the strong solid-liquid interactions between the SPE and graphene electrode lead to a very small gap of ∼5.5 Å between the components of SPE and electrode, resulting in a structured solid-to-liquid interface, which can potentially improve energy storage performance. The results also indicated the critical role of the mobility of free-standing anions in the SPE network to achieve high ionic conductivity for applications requiring fast charge/discharge. In addition, the formations of hardener-depleted regions and cation-anion-poor/rich regions near the uncharged/charged electrode surfaces were observed at the molecular level, providing insights for rationally designing the SPEs to overcome the boundaries for further breakthroughs in energy storage technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737087 | PMC |
http://dx.doi.org/10.3390/polym14235106 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States.
Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
Chromophores incorporated into rigid polymer matrices may exhibit novel photophysical properties distinct from those in liquid solutions. In this work, we explored the decay path of the second ππ* state (2ππ*) of riboflavin in poly(vinyl alcohol) (PVA) solutions and films with various acidities. Highly efficient internal conversion from 2ππ* to the lowest ππ* state (1ππ*) induced by slight in-plane motion is demonstrated in all PVA solutions and films, irrespective of environmental acidity and rigidification.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Electric aircraft such as electric aircraft and electric vehicles play a key role in the future electric aviation industry, but they put forward huge requirements for battery energy density. However, the current high-energy-density lithium battery technology still needs to be broken through. Herein, through the molecular structure design of the polymer electrolyte, a strategy of a fast migration channel and wide electrochemical window is proposed to fabricate high-voltage-resistant solid polymer electrolyte (HVPE) via in situ polymerization.
View Article and Find Full Text PDFAdv Mater
January 2025
Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
The rapid advancement of covalent organic frameworks (COFs) in recent years has firmly established them as a new class of molecularly precise and highly tuneable porous materials. However, compared to other porous materials, such as zeolites and metal-organic frameworks, the successful integration of hierarchical porosity into COFs remains largely unexplored. The challenge lies in identifying appropriate synthetic methods to introduce secondary pores without compromising the intrinsic structural porosity of COFs.
View Article and Find Full Text PDFNat Commun
January 2025
School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China.
Adoptive transfer of genetically or nanoparticle-engineered macrophages represents a promising cell therapy modality for treatment of solid tumor. However, the therapeutic efficacy is suboptimal without achieving a complete tumor regression, and the underlying mechanism remains elusive. Here, we discover a subpopulation of cancer cells with upregulated CD133 and programmed death-ligand 1 in mouse melanoma, resistant to the phagocytosis by the transferred macrophages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!