Effect of Solid-State Fermentation on Vitamin C, Photosynthetic Pigments and Sugars in Willow Herb ( (L.) Holub) Leaves.

Plants (Basel)

Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 15c, 02-776 Warsaw, Poland.

Published: November 2022

The goal of this investigation was to establish the impact of solid-state fermentation of different durations on the quantitative changes of vitamin C, sugars and photosynthetic pigments in the leaves of willow herbs. The tested leaves were fermented using two solid-state fermentation methods (aerobic and anaerobic) for different time periods (unfermented and fermented for 24, 48 and 72 h). The quantitative and qualitative composition of chlorophylls, carotenoids, sugars and vitamin C were determined using high performance liquid chromatography (HPLC) with UV detectors. Results indicated that aerobic and anaerobic solid-state fermentation significantly decreased the contents of vitamin C, dehydroascorbic and L-ascorbic acids in leaves compared with the unfermented leaves. The contents of total chlorophyll and chlorophyll a were the highest in unfermented leaves and after 24 h of aerobic solid-state fermentation. The maximum content of total carotenoids in leaves were after 48 and 72 h of aerobic solid-state fermentation (149.31 mg 100 g and 151.51 mg 100 g, respectively). The application of anaerobic solid-state fermentation resulted in significant increase in the content of total sugars, fructose and glucose in investigated samples. In conclusion, optimization of fermentation parameters allows increasing the content of sugars and photosynthetic pigments in leaves of willow herbs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739449PMC
http://dx.doi.org/10.3390/plants11233300DOI Listing

Publication Analysis

Top Keywords

solid-state fermentation
28
photosynthetic pigments
12
leaves
8
sugars photosynthetic
8
pigments leaves
8
leaves willow
8
willow herbs
8
aerobic anaerobic
8
anaerobic solid-state
8
unfermented leaves
8

Similar Publications

Fungal lipases are the leading industrial biocatalyst due to their broad applications, but high cost limits their commercial usage. The low-cost agri-residues substrates can reduce the cost of lipase production. However, the compatibility of agri-residue with fungal species, recovery process of lipase and stability of the enzyme are crucial steps.

View Article and Find Full Text PDF

A variety of phytochemicals from different plants are collected by bees into bee pollen granules. This research focused on evaluating the effects of lactic acid fermentation and enzymatic hydrolysis on the antibacterial activity of bee pollen and its interaction with antibiotics. There is limited knowledge regarding the interactions between treated bee pollen extracts and antibiotics, and this study contributes to the field by providing new insights into the antibacterial activity of pollen subjected to eight distinct treatment methods.

View Article and Find Full Text PDF

Recovery of Phenolic Compounds with Antioxidant Capacity Through Solid-State Fermentation of Pistachio Green Hull.

Microorganisms

December 2024

Biotechnology and Bioengineering Laboratory, Centro de Investigación en Alimentación y Desarrollo, Delicias 33089, Chihuahua, Mexico.

Pistachio green hull (PGH) represents the non-edible fraction obtained after the seed is harvested and is an important source of phenolic compounds. Solid-state fermentation (SSF) is a viable biotechnological and economical technique for extracting phenolic compounds. This study aimed to evaluate the SSF with GH1 to recover total phenolic compounds (TPC) with antioxidant capacity (AC) from PGH.

View Article and Find Full Text PDF

Pretreatment of Palm Kernel Cake by Enzyme-Bacteria and Its Effects on Growth Performance in Broilers.

Animals (Basel)

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

This study aimed to improve palm kernel cake by reducing anti-nutritional factors with enzymes and enhancing its nutritional value through microbial fermentation. It also examined the effects of these treatments on palm kernel cake in broiler chicken diets. Palm kernel cake was hydrolyzed using xylanase and mannanase under various conditions.

View Article and Find Full Text PDF

L-asparaginase (asparagine amidohydrolase) contributes to 40% of the total enzyme demands worldwide and is one-third of the global requirement as an anti-cancerous drug in treating acute lymphocytic leukemia (ALL), a type of leukemia. This protein breaks down L-asparagine into aspartic acid and ammonia those involved in ALL, rely on for growth and survival. Both non-recombinant and recombinant L-asparaginase can be produced by bacteria when a suitable substrate and method (solid-state fermentation (SSF) or submerged fermentation (SmF) which are techniques to grow microorganisms under controlled conditions), is provided.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!