Osteoporosis is characterized by an abnormal bone structure with low bone mass and degradation of microarchitecture. Oxidative stress induces imbalances in osteoblast and osteoclast activity, leading to bone degradation, a primary cause of secondary osteoporosis. Doxorubicin (DOX) is a widely used chemotherapy drug for treating cancer, known to induce secondary osteoporosis. The mechanism underlying DOX-induced bone loss is still not fully understood, but one of the relevant mechanisms is through a massive accumulation of reactive oxygen and nitrogen species (i.e., ROS and NOS) leading to oxidative stress. We investigated the effects of antioxidants Resveratrol and MitoTEMPO on DOX-induced bone impairment using the zebrafish model. DOX was shown to increase mortality, promote skeletal deformities, induce alterations on intestinal villi, impair growth and mineralization and significantly downregulate osteoblast differentiation markers and . Lipid peroxidation was significantly increased in DOX-supplemented groups as compared to control and antioxidants, suggesting ROS formation as one of the key factors for DOX-induced bone loss. Furthermore, DOX affected mineral contents, suggesting an altered mineral metabolism. However, upon supplementation with antioxidants, DOX-induced effects on mineral content were rescued. Our data show that supplementation with antioxidants effectively improves the overall growth and mineralization in zebrafish and counteracts DOX-induced bone anomalies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739841PMC
http://dx.doi.org/10.3390/nu14234959DOI Listing

Publication Analysis

Top Keywords

dox-induced bone
16
supplementation antioxidants
12
bone
8
oxidative stress
8
secondary osteoporosis
8
bone loss
8
growth mineralization
8
antioxidants
5
dox-induced
5
regular supplementation
4

Similar Publications

Design and evaluation of a multi-responsive dual-modality bone-targeted drug delivery vehicle for the treatment of osteosarcoma.

Int J Pharm

January 2025

Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004 China; School of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China. Electronic address:

The combination of chemotherapy and photothermal therapy not only improves the therapeutic effect but also limits the side effects of drugs. Herein, a multi-responsive dual-modality bone-targeted drug delivery vehicle for the treatment of osteosarcoma was designed by utilizing alendronate sodium as a bone-targeting ligand for the targeted delivery of doxorubicin (DOX) loaded polydopamine nanoparticles (PDA NPs) coated with γ-polyglutamic acid (APC@PDA/DOX NPs). The average size of spherical NPs was 140.

View Article and Find Full Text PDF

IKKα-STAT3-S727 axis: a novel mechanism in DOX-induced cardiomyopathy.

Cell Mol Life Sci

September 2024

Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, P.R. China.

Doxorubicin (DOX) is an effective chemotherapeutic drug, but its use can lead to cardiomyopathy, which is the leading cause of mortality among cancer patients. Macrophages play a role in DOX-induced cardiomyopathy (DCM), but the mechanisms undlerlying this relationship remain unclear. This study aimed to investigate how IKKα regulates macrophage activation and contributes to DCM in a mouse model.

View Article and Find Full Text PDF

Doxorubicin (DOX) is an important chemotherapeutic agent for the treatment of hematologic tumors and breast carcinoma. However, its clinical application is limited owing to severe cardiotoxicity. Pyroptosis is a form of programmed cell death linked to DOX-induced cardiotoxicity.

View Article and Find Full Text PDF

Nanoparticles-encapsulated doxorubicin alleviates drug resistance of osteosarcoma via inducing ferroptosis.

Nanotoxicology

June 2024

Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an First People's Hospital, Huai'an, Jiangsu, China.

To determine the effects of polymeric nanoparticle for doxorubicin (Dox) delivery and treatment of drug-resistant Osteosarcoma (OS) cells. Methoxy-polyethylene glycol amino (mPEG-NH2) and platinum bio-mimetic polycaprolactone-cysteine (PtBMLC) were crosslinked to obtain glutathione (GSH)-responsive mPEG-NH2-PtBMLC polymer to encapsulate Dox (named as Nano-Dox). The particle size and zeta potential of the nanoparticles were measured, and internalization of Dox by OS cells was observed.

View Article and Find Full Text PDF

The extracellular matrix (ECM) engages in regulatory interactions with cell surface receptors through its constituent proteins and polysaccharides. Therefore, nano-sized extracellular matrix conjugated with doxorubicin (DOX) is utilized to produce extracellular matrix-drug conjugates (ECM-DOX) tailored for targeted delivery to cancer cells. The ECM-DOX nanoparticles exhibit rod-like morphology, boasting a commendable drug loading capacity of 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!