Isoflavone-rich legumes, including soy, are used for food production, as dietary supplements and in traditional medicine. Soy consumption correlates negatively with benign prostatic hyperplasia (BPH) and voiding symptoms. However, isoflavone effects on the prostate are hardly known. Here, we examined the effects on human prostate smooth muscle contractions and stromal cell growth, which are driving factors of voiding symptoms in BPH. Smooth muscle contractions were induced in prostate tissues from radical prostatectomy. Growth-related functions were studied in cultured stromal cells (WPMY-1). Neurogenic, α1-adrenergic and non-adrenergic contractions were strongly inhibited with 50 µM and by around 50% with 10 µM genistein. Daidzein inhibited neurogenic contractions using 10 and 100 µM. Agonist-induced contractions were inhibited by 100 µM but not 10 µM daidzein. A combination of 6 µM genistein with 5 µM daidzein still inhibited neurogenic and agonist-induced contractions. Proliferation of WPMY-1 cells was inhibited by genistein (>50%) and daidzein (<50%). Genistein induced apoptosis and cell death (by seven-fold relative to controls), while daidzein induced cell death (6.4-fold) without apoptosis. Viability was reduced by genistein (maximum: 87%) and daidzein (62%). In conclusion, soy isoflavones exert sustained effects on prostate smooth muscle contractions and stromal cell growth, which may explain the inverse relationships between soy-rich nutrition, BPH and voiding symptoms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735664 | PMC |
http://dx.doi.org/10.3390/nu14234943 | DOI Listing |
Arterioscler Thromb Vasc Biol
January 2025
British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).
Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.
Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.
Ther Clin Risk Manag
January 2025
Departments of Medicine and Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY, USA.
Pulmonary arterial hypertension (PAH) is a rare and potentially fatal condition characterized by progressive increases in blood pressure in the arteries of the lungs. Oral selexipag, approved by the Food and Drug Administration (FDA) in 2015 for the treatment of PAH, targets prostacyclin receptors on pulmonary arterial vascular smooth muscle and endothelial cells to improve blood flow through the lungs and reduce pulmonary vascular resistance. Oral selexipag is effective, but may be discontinued due to factors like side effects, emergency conditions, or inability to take oral medication, potentially leading to severe adverse events, such as rebound pulmonary hypertension and right heart failure.
View Article and Find Full Text PDFBMC Urol
January 2025
Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China.
Background: In male patients, benign prostate hyperplasia (BPH) and overactive bladder (OAB) secondary to BPH are the primary causes of Lower Urinary Tract Symptoms (LUTS). Recent clinical studies have reported an increased risk of LUTS, particularly severe LUTS conditions, in male asthmatic patients. However, the potential link and mechanism remain unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany.
A balanced activity of cGMP signaling contributes to the maintenance of cardiovascular homeostasis. Vascular smooth muscle cells (VSMCs) can generate cGMP via three ligand-activated guanylyl cyclases, the NO-sensitive guanylyl cyclase, the atrial natriuretic peptide (ANP)-activated GC-A, and the C-type natriuretic peptide (CNP)-stimulated GC-B. Here, we study natriuretic peptide signaling in murine VSMCs and atherosclerotic lesions.
View Article and Find Full Text PDFEur Heart J
January 2025
Center of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Rome, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!