Graphene Quantum Dot-Added Thin-Film Composite Membrane with Advanced Nanofibrous Support for Forward Osmosis.

Nanomaterials (Basel)

UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar.

Published: November 2022

Forward osmosis (FO) technology for desalination has been extensively studied due to its immense benefits over conventionally used reverse osmosis. However, there are some challenges in this process such as a high reverse solute flux (RSF), low water flux, and poor chlorine resistance that must be properly addressed. These challenges in the FO process can be resolved through proper membrane design. This study describes the fabrication of thin-film composite (TFC) membranes with polyethersulfone solution blown-spun (SBS) nanofiber support and an incorporated selective layer of graphene quantum dots (GQDs). This is the first study to sustainably develop GQDs from banyan tree leaves for water treatment and to examine the chlorine resistance of a TFC FO membrane with SBS nanofiber support. Successful GQD formation was confirmed with different characterizations. The performance of the GQD-TFC-FO membrane was studied in terms of flux, long-term stability, and chlorine resistance. It was observed that the membrane with 0.05 wt.% of B-GQDs exhibited increased surface smoothness, hydrophilicity, water flux, salt rejection, and chlorine resistance, along with a low RSF and reduced solute flux compared with that of neat TFC membranes. The improvement can be attributed to the presence of GQDs in the polyamide layer and the utilization of SBS nanofibrous support in the TFC membrane. A simulation study was also carried out to validate the experimental data. The developed membrane has great potential in desalination and water treatment applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735732PMC
http://dx.doi.org/10.3390/nano12234154DOI Listing

Publication Analysis

Top Keywords

chlorine resistance
16
graphene quantum
8
thin-film composite
8
nanofibrous support
8
forward osmosis
8
challenges process
8
solute flux
8
water flux
8
tfc membranes
8
sbs nanofiber
8

Similar Publications

Chlorination-induced spread of antibiotic resistance genes in drinking water systems.

Water Res

January 2025

School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia. Electronic address:

Chlorine, the most widely utilized disinfectant for drinking water globally, has recently been implicated in facilitating the spread of antibiotic resistance genes (ARGs), raising concerns about its underestimated environmental and ecological risks. However, given the current fragmented research focus and results, a comprehensive understanding of the potential mechanisms and influencing factors behind chlorination-promoted ARGs transmission in drinking water systems is crucial. This work is the first to systematically review the variations in abundance, transmission mechanisms, influencing factors, and mitigation strategies related to ARGs during the chlorination process.

View Article and Find Full Text PDF

Combined Effects of the Phage and Sodium Hypochlorite for Reducing Biofilm.

Microorganisms

December 2024

Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil.

are significant spoilage bacteria in raw milk and dairy products, primarily due to their ability to form biofilms and resist disinfection. This study explored the effects of the phage combined with sodium hypochlorite in reducing biofilms on stainless steel at various temperatures and ages. Biofilms were formed using UFV 041 in UHT milk, incubated at 4 °C and 30 °C for 2 and 7 days.

View Article and Find Full Text PDF

Revisiting Mechanism of NaOH Dechlorination Treatments for Bronze Conservation in Quantitative Study.

Materials (Basel)

December 2024

Institute for Culture Heritage and History of Science and Technology, University of Science and Technology Beijing, Beijing 100083, China.

Dechlorination is a crucial strategy for archeological bronze stabilization to resist corrosion induced by cuprous chloride (CuCl). Conventional samples, either archeological or simulated ones, have deficiencies in revealing dechlorination mechanisms for their complex rust layers and difficulties in quantifying chlorine content. In this work, samples with fixed chlorine amounts were prepared by compressing method to solve overcomplicated and unquantifiable problems.

View Article and Find Full Text PDF

Background/objectives: Pathogen inactivation and harmful gene destruction from water just before drinking is the last line of defense to protect people from waterborne diseases. However, commonly used disinfection methods, such as chlorination, ultraviolet irradiation, and membrane filtration, experience several challenges such as continuous chemical dosing, the spread of antibiotic resistance genes (ARGs), and intensive energy consumption.

Methods: Here, we perform a simultaneous elimination of pathogens and ARGs in drinking water using local electric fields and in-situ generated trace copper ions (LEF-Cu) without external chemical dosing.

View Article and Find Full Text PDF

Introduction: Although photodynamic therapy (PDT) shows considerable potential for cancer treatment due to its precise spatial control and reduced toxicity, effectively eliminating residual cells under hypoxic conditions remains challenging because of the resistance conferred by these cells.

Methods: Herein, we synthesize an amphiphilic PEGylated polyphosphoester and present a nanocarrier (NP) specifically designed for the codelivery of hydrophobic photosensitizer (chlorin e6, Ce6) and hypoxia-activated prodrugs (tirapazamine, TPZ). We investigate the antitumor effect of NP on both cellular and animal level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!