Cyclic peptides are one of the important chemical groups in the HDAC inhibitor family. Following the success of romidepsin in the clinic, naturally occurring cyclic peptides with a hydrophilic moiety have been intensively studied to test their function as HDAC inhibitors. Azumamides A-E, isolated from , are one of the powerful HDAC inhibitor classes. Structurally, azumamides A-E consist of three -α-amino acids and unnatural β-amino acids such as 3-amino-2-methyl-5-nonenedioic acid-9-amide (Amnna) and 3-amino-2-methyl-5-nonenoic-1,9-diacid (Amnda). Moreover, azumamides have a retro-arrangement peptide backbone, unlike other naturally occurring cyclopeptide HDAC inhibitors, owing to the -configuration of all residues. This review summarizes the currently available synthetic methods of azumamides A-E focusing on the synthesis of β-amino acids and macrocyclization. In addition, we overview the structure-activity relationship of azumamides A-E based on reported analogs. Collectively, this review highlights the potentiality of azumamides A-E as an HDAC inhibitor and provides further developmental insight into naturally occurring cyclic peptides in HDAC inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737774PMC
http://dx.doi.org/10.3390/molecules27238438DOI Listing

Publication Analysis

Top Keywords

azumamides a-e
24
cyclic peptides
12
hdac inhibitor
12
naturally occurring
12
structure-activity relationship
8
occurring cyclic
8
hdac inhibitors
8
β-amino acids
8
azumamides
7
hdac
6

Similar Publications

Cyclic peptides are one of the important chemical groups in the HDAC inhibitor family. Following the success of romidepsin in the clinic, naturally occurring cyclic peptides with a hydrophilic moiety have been intensively studied to test their function as HDAC inhibitors. Azumamides A-E, isolated from , are one of the powerful HDAC inhibitor classes.

View Article and Find Full Text PDF

Cyclic tetrapeptide and depsipeptide natural products have proven useful as biological probes and drug candidates due to their potent activities as histone deacetylase (HDAC) inhibitors. Here, we present the syntheses of a class of cyclic tetrapeptide HDAC inhibitors, the azumamides, by a concise route in which the key step in preparation of the noncanonical disubstituted β-amino acid building block was an Ellman-type Mannich reaction. By tweaking the reaction conditions during this transformation, we gained access to the natural products as well as two epimeric homologues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!