This study aims to observe the differentiating effect of shikonin on Wilms' tumor 1 (WT1)-positive HL-60 cells and investigate the fate of the differentiated leukemia cells. WT1 overexpression unaffected cell viability but promoted resistance to HO-induced DNA injury and cell apoptosis. The binding of shikonin to the WT1 protein was confirmed by molecular docking and drug affinity reaction target stability (DARTS). Shikonin at the non-cytotoxic concentration could decrease the WT1 protein and simultaneously reduced the CD34 protein and increased the CD11b protein in a dose-dependent manner in normal HL-60 cells but not in WT1-overexpressed HL-60 cells. Shikonin unaffected HL-60 cell viability in 48 h. However, it lasted for 10 days; could attenuate cell proliferation, mitochondrial membrane potential (MMP), and self-renewal; prevent the cell cycle; promote cell apoptosis. In a mouse leukemia model, shikonin could decrease the WT1 protein to prevent leukemia development in a dose-dependent manner. In this study, we also confirmed preliminarily the protein-protein interactions between WT1 and CD34 in molecular docking and CO-IP assay. Our results suggest that: 1. shikonin can down-regulate the WT1 protein level for leukemia differentiation therapy, and 2. the interaction between WT1 and CD34 proteins may be responsible for granulocyte/monocyte immaturity in HL-60 cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735585 | PMC |
http://dx.doi.org/10.3390/molecules27238264 | DOI Listing |
Molecules
December 2024
Laboratory of Advanced Materials in Biopharmaceutics and Technics, Institute of Chemistry, Moldova State University, MD-2009 Chisinau, Moldova.
Ten coordination compounds, [Cu(L)Cl] (), [Cu(L)NO] (), [Cu(L)Cl] (C3), [Cu(L)NO] (), [Cu(L)Cl] (), [Cu(L)NO] (), [Cu(L)NO] (), [Cu(L)Cl] (), [Cu(L)Cl] (), and [Cu(L)NO] (), containing pyridine derivatives of -methoxyphenyl-thiosemicarbazones were synthesized and characterized. The molecular structure of four compounds was investigated using single crystal X-ray diffraction. Spectral analysis techniques such as FT-IR, H NMR, C NMR, elemental analysis, and molar conductivity were used for all the synthesized compounds.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
January 2025
Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
Life Sci
January 2025
Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India. Electronic address:
Pulmonary fibrosis (PF) arises from dysregulated wound healing, leading to excessive extracellular matrix (ECM) deposition and impaired lung function. Macrophages exhibit high plasticity, polarizing to pro-inflammatory M1 during early inflammation and anti-inflammatory, fibrosis-inducing M2 during later stages of PF. Additionally, neutrophils and neutrophil extracellular traps (NETs) release mediated by peptidyl arginine deiminase (PAD-4), also play a key role in PF progression.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
Acute myeloid leukemia (AML) is a severe blood cancer with an urgent need for novel therapies for refractory or relapsed patients. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), an immune suppressive receptor expressed on immune cells and AML blasts but minimally on hematopoietic stem cells (HSCs), represents a potential therapeutic target. But there has been limited research on therapies targeting LAIR1 for AML and no published reports on LAIR1 antibody-drug conjugate (ADC).
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
December 2024
Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China.
Objective: To investigate the effects of Curcumol on the malignant biological characteristics of acute myeloid leukemia (AML) cells and its molecular mechanism, and to provide theoretical and experimental evidence for the anti-leukemia treatment of traditional Chinese medicine.
Methods: After the AML cell lines HL-60 and KG-1 cells were treated different concentrations of with Curcumol. The proliferation activity of cells was detected by CCK-8 method, and the expression changes of apoptotic proteins and PI3K/AKT signaling pathway proteins were detected by Western blot.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!