Facile Synthesis of Highly Emissive All-Inorganic Manganese Bromide Compounds with Perovskite-Related Structures for White LEDs.

Molecules

Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China.

Published: November 2022

Lead-free all-inorganic halide materials with different Mn-based crystal structures (CsMnBr and CsMnBr) were obtained using a convenient synthetic method. CsMnBr had a bright green emission (522 nm), with a unique single-exponential lifetime (τ = 236 µs) and a high photoluminescence quantum yield (82 ± 5%). A red emission was observed in the case of the CsMnBr structure with a two-exponential fluorescence decay curve, and the lifetime was 1.418 µs (93%) and 18.328 µs (7%), respectively. By a judicious tuning of the synthetic conditions, a mixed phase of CsMnBr/CsMnBr was also produced that emitted white light, covering almost the entire visible spectrum. White-light-emitting diodes (WLEDs) with color coordinates (0.4269, 0.4955), a color temperature of (3773 K), and a color rendering index (68) were then fabricated using the as-prepared powder of mixed phases of CsMnBr/CsMnBr with a commercial UV LED chip (365 nm).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736304PMC
http://dx.doi.org/10.3390/molecules27238259DOI Listing

Publication Analysis

Top Keywords

facile synthesis
4
synthesis highly
4
highly emissive
4
emissive all-inorganic
4
all-inorganic manganese
4
manganese bromide
4
bromide compounds
4
compounds perovskite-related
4
perovskite-related structures
4
structures white
4

Similar Publications

Enthalpy is often the focal point when designing monomers for polymer circularity, but much less is explored on how entropy can be exploited to create polymers with synergistic circularity and properties. Here, we design a series of spiro-lactones (SLs) with closed-chain cycloalk(en)yl substituents at the α,α-position of δ-valerolactone (δVL), which, when combined with the parent δVL and -α,α-dialkyl-substituted δVL with open-chain alkyl groups, provide a desired platform for exploring the circular polymer design by focusing on the entropy change of polymerization. These SLs exhibit finely balanced (de)polymerizability that is regulated chiefly by entropy differentiation, allowing both the facile synthesis of polyester PSLs ( up to 1000 kg mol) in a living fashion and selective depolymerization of the PSLs to completely recover monomers under mild conditions (using a recyclable catalyst at 100 °C).

View Article and Find Full Text PDF

KOBu-Promoted [3 + 2] Cycloaddition of Dimethyl Sulfoxide with Fullerenes.

Org Lett

January 2025

State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.

KOBu-promoted [3 + 2] cycloaddition of dimethyl sulfoxide (DMSO) with fullerenes has been developed for facile and efficient one-pot synthesis of 1,2,3,4-cyclic sulfoxide-fused [60]/[70]fullerene dihydrides, which offers a versatile platform for the site-selective preparation of various fullerene multiadducts with a wide range of functional groups. The utility of these tetra-functionalized fullerenes is demonstrated by the successful application as electron-transport materials in perovskite solar cells.

View Article and Find Full Text PDF

Highly Green Fluorescent Carbon Dots from Gallic Acid: A Turn-On Sensor toward Pb Ions.

ACS Omega

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.

View Article and Find Full Text PDF

Emission Tuning of Nonconventional Luminescent Materials via Cluster Engineering.

Small

January 2025

Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China.

Nonconventional Luminescent Materials (NLMs) with distinctive optical properties are garnering significant attention. A key challenge in their practical application lies in precisely controlling their emission behavior, particularly achieving excitation wavelength-independent emission, which is paramount for accurate chemical sensing. In this study, NLMs (Y1, Y2, Y3, and Y4) are synthesized via a click reaction, and it is found that excitation wavelength-dependent emission correlates with molecular cluster formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!