Lignocellulosic biomass (LCB) has remained a latent alternative resource to be the main substitute for oil and its derivatives in a biorefinery concept. However, its complex structure and the underdeveloped technologies for its large-scale processing keep it in a state of constant study trying to establish a consolidated process. In intensive processes, enzymes have been shown to be important molecules for the fractionation and conversion of LCB into biofuels and high-value-added molecules. However, operational challenges must be overcome before enzyme technology can be the main resource for obtaining second-generation sugars. The use of additives is shown to be a suitable strategy to improve the saccharification process. This review describes the mechanisms, roles, and effects of using additives, such as surfactants, biosurfactants, and non-catalytic proteins, separately and integrated into the enzymatic hydrolysis process of lignocellulosic biomass. In doing so, it provides a technical background in which operational biomass processing hurdles such as solids and enzymatic loadings, pretreatment burdens, and the unproductive adsorption phenomenon can be addressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739445 | PMC |
http://dx.doi.org/10.3390/molecules27238180 | DOI Listing |
Biotechnol Adv
December 2024
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China. Electronic address:
The depletion of fossil resources, coupled with global warming and adverse environmental impact of traditional petroleum-based plastics, have necessitated the discovery of renewable resources and innovative biodegradable materials. Lignocellulosic biomass (LB) emerges as a highly promising, sustainable and eco-friendly approach for accumulating polyhydroxyalkanoate (PHA), as it completely bypasses the problem of "competition for food". This sustainable and economically efficient feedstock has the potential to lower PHA production costs and facilitate its competitive commercialization, and support the principles of circular bioeconomy.
View Article and Find Full Text PDFJ Environ Manage
December 2024
National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. Electronic address:
The kitchen waste and garden waste (KW-GW) co-composting system provides an effective method for recycling these two types of municipal solid waste; however, further improvements are needed to enhance bioconversion performance. This study investigates a novel composting additive, calcium polypeptides (CPPs), derived from waste animal and plant proteins, which can enhance the bioconversion capacity of biomass in the KW-GW co-composting system. As a pH regulator and an available nitrogen source, CPPs significantly increase the compost matrix pH, prolong the thermophilic phase, and reduce emissions of exhaust gases such as CH, NO, NH, and HS by 52.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemical Engineering, Bioengineering and Biomass Valorization Laboratory, Federal University of Ceará, Fortaleza, Ceará 60020-181, Brazil.
Cellulose nanostructures obtained from lignocellulosic biomass via enzymatic processes may offer advantages in terms of material properties and processing sustainability. Thus, in this study, cellulose nanoparticles with a spherical morphology were produced through the enzymatic hydrolysis of cashew apple bagasse (CAB). CAB was previously subjected to alkaline and acid-alkali pretreatment, and the pretreated solids were labeled as CAB-PTA and CAB-PT-HA, respectively.
View Article and Find Full Text PDFPNAS Nexus
January 2025
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
The relentless depletion of fossil fuels accentuates the urgent necessity for the sustainable synthesis of chemicals from renewable biomass. 5-Hydroxymethylfurfural (HMF), extracted from lignocellulosic biomass, emerges as a beacon of hope for conversion into value-added chemicals. However, the inherent susceptibility of its unsaturated aldehyde groups to excessive oxidation often culminates in undesired reactions, compromising both the yield and specificity of the desired products.
View Article and Find Full Text PDFBiotechnol Adv
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:
Lignocellulosic biomass (LCB) is expected to play a critical role in achieving the goal of biomass-to-bioenergy conversion because of its wide distribution and low price. Biomass fermentation is a promising method for the sustainable generation of biohydrogen (bioH) from the renewable feedstock. Due to the inherent resistant structure of biomass, LCB needs to be pretreated to improve its digestibility and utilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!