This paper investigates the seismic behavior of a seismic-damaged double-deck viaduct frame pier (DVFP) strengthened with CFRP and enveloped steel, four strengthened DVFP specimens with different degrees of initial damage were tested under quasi-static cyclic loading. Based on the test results, the hysteretic behavior, the stiffness and strength degradation, crack propagation, and failure mechanism were firstly analyzed. Then, the damage indexes of the tested specimens were calculated with different models to evaluate the seismic strengthening performance. Results of this study show that CFRP and enveloped steel strengthening could effectively improve the strength and ductility of pre-damaged DVFPs. The ultimate load, the failure displacement and the displacement ductility of the moderately damaged specimen after being strengthened were found to increase by 120.74%, 35% and 32.33%, respectively. For the severely damaged specimens with CFRP and enveloped steel strengthening, the figures were 105.36%, 25.98% and 31.41%, respectively. The research results can provide reference for the hybrid strengthening application of seismic-damaged DVFP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739369 | PMC |
http://dx.doi.org/10.3390/ma15238668 | DOI Listing |
Materials (Basel)
December 2022
China Construction Seventh Engineering Division Corp. Ltd., Zhengzhou 450004, China.
This paper investigates the seismic behavior of a seismic-damaged double-deck viaduct frame pier (DVFP) strengthened with CFRP and enveloped steel, four strengthened DVFP specimens with different degrees of initial damage were tested under quasi-static cyclic loading. Based on the test results, the hysteretic behavior, the stiffness and strength degradation, crack propagation, and failure mechanism were firstly analyzed. Then, the damage indexes of the tested specimens were calculated with different models to evaluate the seismic strengthening performance.
View Article and Find Full Text PDFPolymers (Basel)
October 2022
Faculty of Mechanical Engineering, "Gheorghe Asachi" Technical University, 43 D. Mangeron Blvd., 700050 Iasi, Romania.
Methods to predict the fracture of thin carbon fibre-reinforced polymers (CFRPs) under load are of great interest in the automotive industry. The manufacturing of composites involves a high risk of defect occurrence, and the identification of those that lead to failure increases the functional reliability and decreases costs. The performance of CFRPs can be significantly reduced in assembled structures containing stress concentrators.
View Article and Find Full Text PDFMaterials (Basel)
October 2022
School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
The biaxial loading properties of carbon-fiber-reinforced polymer (CFRP) are critical for evaluating the performance of composite structures under the complex stress state. There are currently no standardized specimens for the CFRP biaxial experiments. This work developed a new design criterion for the cruciform specimen coupled with the Hashin criterion.
View Article and Find Full Text PDFCompos Sci Technol
January 2021
Department of Materials Manufacturing, Ford Motor Company, Dearborn, MI 48124, USA.
A bottom-up multi-scale modeling approach is used to develop an Integrated Computational Materials Engineering (ICME) framework for carbon fiber reinforced polymer (CFRP) composites, which has the potential to reduce development to deployment lead time for structural applications in lightweight vehicles. In this work, we develop and integrate computational models comprising of four size scales to fully describe and characterize three types of CFRP composites. In detail, the properties of the interphase region are determined by an analytical gradient model and molecular dynamics analysis at the nano-scale, which is then incorporated into micro-scale unidirectional (UD) representative volume element (RVE) models to characterize the failure strengths and envelopes of UD CFRP composites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!