Band Structure and Quantum Transport of Bent Bilayer Graphene.

Materials (Basel)

Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830046, China.

Published: December 2022

We investigate the band structures and transport properties of a zigzag-edged bent bilayer graphene nanoribbon under a uniform perpendicular magnetic field. Due to its unique geometry, the edge and interface states can be controlled by an electric field or local potential, and the conductance exhibits interesting quantized behavior. When Zeeman splitting is considered, the edge states are spin-filtered, and a weak quantum spin Hall (WQSH) phase appears. In the presence of an electric field or local potential, a WQSH-QH junction or WQSH-spin-unbalanced QSH junction can be achieved, respectively, while fully spin-polarized currents appear in the interface region. Zeeman splitting lifts the spin degeneracy, leading to a WQSH around zero energy with a quantized two-terminal conductance of 4e/h, which is robust against weak nonmagnetic disorder. These results provide a way to manipulate the band structures and transport properties of the system using an electric field, local potential, and Zeeman splitting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740608PMC
http://dx.doi.org/10.3390/ma15238664DOI Listing

Publication Analysis

Top Keywords

electric field
12
field local
12
local potential
12
zeeman splitting
12
bent bilayer
8
bilayer graphene
8
band structures
8
structures transport
8
transport properties
8
band structure
4

Similar Publications

Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.

View Article and Find Full Text PDF

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

Electronic ferroelectricity in monolayer graphene moiré superlattices.

Nat Commun

December 2024

Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.

Extending ferroelectric materials to two-dimensional limit provides versatile applications for the development of next-generation nonvolatile devices. Conventional ferroelectricity requires materials consisting of at least two constituent elements associated with polar crystalline structures. Monolayer graphene as an elementary two-dimensional material unlikely exhibits ferroelectric order due to its highly centrosymmetric hexagonal lattices.

View Article and Find Full Text PDF

Prediction and discovery of new materials with desired properties are at the forefront of quantum science and technology research. A major bottleneck in this field is the computational resources and time complexity related to finding new materials from ab initio calculations. In this work, an effective and robust deep learning-based model is proposed by incorporating persistent homology with graph neural network which offers an accuracy of and an F1 score of in classifying topological versus non-topological materials, outperforming the other state-of-the-art classifier models.

View Article and Find Full Text PDF

Ampere-level reduction of pure nitrate by electron-deficient Ru with K ions repelling effect.

Nat Commun

December 2024

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Electrochemical nitrate reduction reaction offers a sustainable and efficient pathway for ammonia synthesis. Maintaining satisfactory Faradaic efficiency for long-term nitrate reduction under ampere-level current density remains challenging due to the inevitable hydrogen evolution, particularly in pure nitrate solutions. Herein, we present the application of electron deficiency of Ru metals to boost the repelling effect of counter K ions via the electric-field-dependent synergy of interfacial water and cations, and thus largely promote nitrate reduction reaction with a high yield and well-maintained Faradaic efficiency under ampere-level current density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!