A novel grain-based DEM (Discrete Element Method) model is developed and calibrated to simulate RB-SiC (Reaction-Bonded Silicon Carbide) ceramic and associated scratching process by considering the bonded SiC and Si grains and cementitious materials. It is shown that the grain-based DEM model can accurately identify transgranular and intergranular cracks, and ductile and brittle material removal modes. It also shows that by increasing the scratching speed or decreasing the depth of cut, the maximum depth of subsurface damage decreases, because the scratching force is relatively large under the low scratching speed or large depth of cut that facilitates the occurrence of transgranular cracks, large grain spalling from the target surface and the propagation of median cracks into the target subsurface. It has further been found that increasing the cutting-edge radius can enhance the target ductile machinability and reduce the target subsurface damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739719 | PMC |
http://dx.doi.org/10.3390/ma15238486 | DOI Listing |
Materials (Basel)
November 2022
Department of Manufacturing Technologies, Leibniz Institute for Materials Engineering-IWT, 28359 Bremen, Germany.
A novel grain-based DEM (Discrete Element Method) model is developed and calibrated to simulate RB-SiC (Reaction-Bonded Silicon Carbide) ceramic and associated scratching process by considering the bonded SiC and Si grains and cementitious materials. It is shown that the grain-based DEM model can accurately identify transgranular and intergranular cracks, and ductile and brittle material removal modes. It also shows that by increasing the scratching speed or decreasing the depth of cut, the maximum depth of subsurface damage decreases, because the scratching force is relatively large under the low scratching speed or large depth of cut that facilitates the occurrence of transgranular cracks, large grain spalling from the target surface and the propagation of median cracks into the target subsurface.
View Article and Find Full Text PDFGeotech Geol Eng (Dordr)
April 2021
Present Address: Jacobs Engineering Group Inc., 1 City Walk, Leeds, UK.
Thermo-mechanical loading can occur in numerous engineering geological environments, from both natural and anthropogenic sources. Different minerals and micro-defects in rock cause heterogeneity at a grain scale, affecting the mechanical and thermal properties of the material. Changes in strength and stiffness can occur from exposure to elevated temperatures, with the accumulation of localised stresses resulting in thermally induced micro-cracking within the rock.
View Article and Find Full Text PDFMaterials (Basel)
October 2019
Hebei Province Key Lab of Structural Health Monitoring and Control, Shijiazhuang Tiedao University, Shijiazhuang 050043, China.
It is important to study the failure mechanism of concrete by observing the crack expansion and capturing key structures at the mesoscale. This manuscript proposed a method for efficiently identifying aggregate boundary information by X-ray computed tomography technology (CT) and a discrete element modeling method (DEM) for equivalent random polygon aggregates. This method overcomes the shortcomings of the Grain Based Model (GBM) which is impossible to establish a mesoscopic model with a large difference in grain radius.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!