Pore structure and composition of cement paste are the main two factors in controlling the sulfate attack on concrete, but the influence of carbonization on pore structure and composition is often ignored in sulfate attack. Therefore, will the damage performance of concrete partially exposed to sulfate solution be different avoiding the alterations of pore structure and composition due to carbonation? In this paper, the cement pastes were partially immersed in 5 wt. % sodium sulfate solution, with N as protective gas to avoid carbonation (20 ± 1°C, RH 65 ± 5%). Pore structures of cements were changed by introducing different contents of limestone powders (0 wt. %, 10 wt. %, 20 wt. %, and 30 wt. %) into cement pastes. The damage performance of the specimens was studied by H NMR, XRD and SEM. The results showed that the immersion zone of pure cement paste under N atmosphere remained intact while serious damage occurred in the evaporation zone. However, the damage of cement + limestone powders pastes appeared in the immersion zone rather than in the evaporation zone and cement pastes containing more limestone were more severely damaged. Compositional analysis suggested that the damage of the evaporation zone or the immersion zone was solely caused by chemical attack where substantial amount of gypsums and ettringites were filled in the pore volumes. Introduction of limestone powders led to the increase of the pore sizes and porosity of cement pastes, causing the damage occurred in the immersion zone not in the evaporation zone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736541 | PMC |
http://dx.doi.org/10.3390/ma15238351 | DOI Listing |
ACS Omega
January 2025
Department of Textile Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand.
This study investigates the reinforcement of cement paste with woven fabrics made from recycled poly(ethylene terephthalate) (PET) bottle yarn, aiming to enhance its mechanical properties while addressing PET waste. PET bottles were transformed into yarn with a denier of 3,593.8, strength of 91.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Pedodontics, Faculty of Dentistry, Erciyes University, 38039, Kayseri, Türkiye.
Objectives: This study evaluates the effect of different irrigation solutions for postoperative pain in the regenerative endodontic treatments (RET) of necrotic teeth with open apex.
Materials And Methods: This study included necrotic, deeply carious lower molars of 42 patients. Access cavities of the teeth were opened and working lengths were measured at the first visit.
J Indian Soc Pedod Prev Dent
October 2024
Department of Pediatric and Preventive Dentistry, Subharti Dental College and Hospital, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India.
Background And Aim: This study aims to evaluate the efficacy of different endodontic irrigants employed in the lesion sterilization and tissue repair (LSTR) technique.
Methods: Forty children aged 4-8 years having at least one primary molar with irreversible pulpitis/pulpal necrosis indicated for pulpectomy were included. Participants were randomly divided into three test groups (Group A, B, and C) and one control group (Group D).
Materials (Basel)
January 2025
College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China.
Hydraulic structures are frequently subjected to soft-water or acidic environments, necessitating serious consideration of the long-term effects of calcium leaching on the durability of concrete structures. Three types of common Portland cement (ordinary Portland cement, moderate-heat cement, and low-heat cement) paste samples widely applied to hydraulic concrete were immersed in a 6 mol/L NHCl solution to simulate accelerated calcium leaching behavior. The mass loss, porosity, leaching depth, compressive strength, and Ca/Si ratio of the three types of pastes were measured at different immersion stages (0, 14, 28, 56, 91, 140, and 180 days).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Gansu Industry Technology Center of Transportation Construction Materials Research and Application, Lanzhou Jiaotong University, Lanzhou 730070, China.
In order to study the effect of the crushing process on the fine separation of reclaimed asphalt pavement (RAP) and the mechanical properties of cement-stabilised aggregate mixed with RAP, four crushing processes, namely small mesh hammer crushing, hammer crushing, jaw crushing, and double roller crushing, were used to separate the aggregate from asphalt in RAP materials. The effect of crushing on the grading characteristics and agglomeration condition of RAP material was investigated. RAP cement-stabilised aggregates were prepared and analysed for their mechanical properties and micro-morphology using RAP materials obtained from fine separation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!