Lately, the development of green chemistry methods with high efficiency for metal nanoparticle synthesis has become a primary focus among researchers. The main goal is to find an eco-friendly technique for the production of nanoparticles. Ferro- and ferrimagnetic materials such as magnetite (FeO) exhibit superparamagnetic behavior at a nanometric scale. Magnetic nanoparticles have been gaining increasing interest in nanoscience and nanotechnology. This interest is attributed to their physicochemical properties, particle size, and low toxicity. The present work aims to synthesize magnetite nanoparticles in a single step using extracts of green lemon Citrus Aurantifolia residues. The results produced nanoparticles of smaller size using a method that is friendlier to health and the environment, is more profitable, and can be applied in anticorrosive coatings. The green synthesis was carried out by a co-precipitation method under variable temperature conditions. The X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) characterization showed that magnetite nanoparticles were successfully obtained with a very narrow particle size distribution between 3 and 10 nm. A composite was produced with the nanoparticles and graphene to be used as a surface coating on steel. In addition, the coating's anticorrosive behavior was evaluated through electrochemical techniques. The surface coating obtained showed good anticorrosive properties and resistance to abrasion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735538 | PMC |
http://dx.doi.org/10.3390/ma15238328 | DOI Listing |
Org Lett
January 2025
Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
This work describes a chiral bifunctional squaramide/DBU sequential catalytic strategy for the enantioselective synthesis of nonfused chiral eight-membered O-heterocycles through the asymmetric addition of ynones to β,γ-unsaturated α-ketoesters followed by the regio- and diastereoselective cyclization of the adduct intermediates. Mechanistic experiments revealed that an isomerization process should be involved in the ring formation step, and the origin of the high regioselectivity and diastereoselectivity has also been elucidated by the DFT calculations.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
Ni(II)-hydrazineylpyridine (Ni(II)-PyH)-catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones from α,β-unsaturated ketones and alcohols is reported a Fenton free-radical reaction. This protocol enables facile access to desired products in good to excellent yields in 12 h using toluene solvent at room temperature to 100 °C. The structural analysis of the products was confirmed by H, C-NMR, GC-MS, and HRMS data.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
This study introduces a new nano catalyst tailored for the eco-friendly synthesis of pyrido[2,3-]pyrimidine via a three-component one-pot reaction involving benzaldehydes, malononitrile, and uracil. To achieve this objective, we anchored copper acetate onto the surface of layered double hydroxides modified with 1,3‑benzenedisulfonyl amide (BDSA) (LDH@PTRMS@BDSA@Cu(NO)), which exhibited remarkable activity and selectivity. The main benefits of this method include high product yield, swift reaction times, straightforward purification, catalyst reusability, and the employment of a mild reaction process.
View Article and Find Full Text PDF3 Biotech
February 2025
Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai, Tamil Nadu 600034 India.
Unlabelled: The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek () seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China.
CO hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO catalyst by engineering lattice dislocation structures of TiO support. We discover that this modification orders irregularly arranged atoms in TiO to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!