The first neutral 2D heterometallic assemblies based on orbitally degenerate heptacyanidorhenate(IV) were prepared and structurally characterized. An analysis of the magnetic data for the polycrystalline samples of PhP[{Mn(acacen)}Re(CN)]·Solv () and PPN[{Mn(acacen)}Re(CN)]·Solv () have shown that both materials display slow magnetic relaxation at temperatures below 10 and 21 K for and , respectively. Despite the presence of the same molecular magnetic modules that make up the anionic layers, the studied 2D networks differ significantly in magnetic anisotropy, having a small coercive field (0.115 T) for and a large one (~2.5 T) for at 2 K. In addition, for both polymers a M(H) value does not saturate at the maximum available field of 7 T, and the material is a metamagnet. This intriguing difference originates from the cooperative anisotropic spin interaction in Re-CN-Mn pairs and the zero field splitting (ZFS) effect of Mn ions with a noncollinear alignment of the local magnetic axes in crystals of the compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739847PMC
http://dx.doi.org/10.3390/ma15238324DOI Listing

Publication Analysis

Top Keywords

molecular magnetic
8
magnetic
6
anisotropic molecular
4
magnetic materials
4
materials based
4
based pentagonal
4
pentagonal bipyramidal
4
bipyramidal heptacyanidorhenateiv
4
heptacyanidorhenateiv neutral
4
neutral heterometallic
4

Similar Publications

The role of self-intercalation in 2D van der Waals materials is key to the understanding of many of their properties. Here we show that the magnetic ordering temperature of thin films of the 2D ferromagnet Fe_{5}GeTe_{2} is substantially increased by self-intercalated Fe that resides in the van der Waals gaps. The epitaxial films were prepared by molecular beam epitaxy and their magnetic properties explored by element-specific x-ray magnetic circular dichroism that showed ferromagnetic ordering up to 375 K.

View Article and Find Full Text PDF

Electric quadrupole traps are a leading technology for suspending charged objects ranging in size from single protons to atomic and molecular ions, and even to nano- and micron-sized bodies. If the levitated objects' charge distribution contains multipoles, the time-dependent trapping fields can significantly impact its rotational motion. Here, we experimentally observe the transition from librational motion to a regime where a microparticle rotates in sync with the trap drive.

View Article and Find Full Text PDF

Background And Objectives: Levels of activated complement proteins in the CSF are increased in people with multiple sclerosis (MS) and are associated with clinical disease severity. In this study, we determined whether complement activation profiles track with quantitative MRI metrics and liquid biomarkers indicative of disease activity and progression.

Methods: Complement components and activation products (Factor H and I, C1q, C3, C4, C5, Ba, Bb, C3a, C4a, C5a, and sC5b-9) and liquid biomarkers (neurofilament light chain, glial fibrillary acidic protein [GFAP], CXCL-13, CXCL-9, and IL-12b) were quantified in the CSF of 112 patients with clinically isolated syndromes and 127 patients with MS; longitudinal MRIs according to a standardized protocol of the Swiss MS cohort were assessed.

View Article and Find Full Text PDF

Dynamic nuclear polarization (DNP) and emerging quantum technologies rely on the spin transfer in electron-nuclear hybrid quantum systems. Spin transfers might be suppressed by larger couplings, e.g.

View Article and Find Full Text PDF

Background: MicroRNAs have been linked to dementia. However, understanding their relation to cognition in the general population is required to determine their potential use for the detection and prevention of age-associated cognitive decline and preclinical dementia. Therefore, we examined the association of circulating microRNAs with cognitive performance in a population-based cohort and the possible underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!