Interorganelle membrane contact sites (MCS) are areas of close vicinity between the membranes of two organelles that are maintained by protein tethers. Recently, a significant research effort has been made to study MCS, as they are implicated in a wide range of biological functions, such as organelle biogenesis and division, apoptosis, autophagy, and ion and phospholipid homeostasis. Their composition, characteristics, and dynamics can be studied by different techniques, but in recent years super-resolution fluorescence microscopy (SRFM) has emerged as a powerful tool for studying MCS. In this review, we first explore the main characteristics and biological functions of MCS and summarize the different approaches for studying them. Then, we center on SRFM techniques that have been used to study MCS. For each of the approaches, we summarize their working principle, discuss their advantages and limitations, and explore the main discoveries they have uncovered in the field of MCS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739495 | PMC |
http://dx.doi.org/10.3390/ijms232315354 | DOI Listing |
Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver.
View Article and Find Full Text PDFBackground: Bridge-like lipid transfer proteins (BLTPs) mediate bulk lipid transport at membrane contact sites. Mutations in BLTPs are linked to both early-onset neurodevelopmental and later-onset neurodegenerative diseases, including movement disorders. The tissue specificity and temporal requirements of BLTPs in disease pathogenesis remain poorly understood.
View Article and Find Full Text PDFBBA Adv
December 2024
University of São Paulo, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), São Paulo, 05508-000, Brazil.
Metastases are the leading cause of cancer-related deaths, and their origin is not fully elucidated. Recently, studies have shown that extracellular vesicles (EVs), particularly small extracellular vesicles (sEV), can disrupt the homeostasis of organs, promoting the development of a secondary tumor. However, the role of sEV in brain endothelium and their association with metastasis related to breast cancer is unknown.
View Article and Find Full Text PDFPathogenic variants of GDAP1 cause Charcot-Marie-Tooth disease (CMT), an inherited neuropathy characterized by axonal degeneration. GDAP1, an atypical glutathione S-transferase, localizes to the outer mitochondrial membrane (OMM), regulating this organelle's dynamics, transport, and membrane contact sites (MCSs). It has been proposed that GDAP1 functions as a cellular redox sensor.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China. Electronic address:
Developing new conductive primers to ensure electrostatic spraying is crucial in response to the call for lightweight production of new energy vehicles. We report a stabilized material, Fe-T/G, of Fe-doped TiO composite graphene synthesized by a simple hydrothermal and electrostatic self-assembly method. The resistivity decreases from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!