The global prevalence of diabetes mellitus and Alzheimer's disease is increasing alarmingly with the aging of the population. Numerous epidemiological data suggest that there is a strong association between type 2 diabetes and an increased risk of dementia. These diseases are both degenerative and progressive and share common risk factors. The amyloid cascade plays a key role in the pathophysiology of Alzheimer's disease. The accumulation of amyloid beta peptides gradually leads to the hyperphosphorylation of tau proteins, which then form neurofibrillary tangles, resulting in neurodegeneration and cerebral atrophy. In Alzheimer's disease, apart from these processes, the alteration of glucose metabolism and insulin signaling in the brain seems to induce early neuronal loss and the impairment of synaptic plasticity, years before the clinical manifestation of the disease. The large amount of evidence on the existence of insulin resistance in the brain during Alzheimer's disease has led to the description of this disease as "type 3 diabetes". Available animal models have been valuable in the understanding of the relationships between type 2 diabetes and Alzheimer's disease, but to date, the mechanistical links are poorly understood. In this non-exhaustive review, we describe the main molecular mechanisms that may link these two diseases, with an emphasis on impaired insulin and IGF-1 signaling. We also focus on GSK3β and DYRK1A, markers of Alzheimer's disease, which are also closely associated with pancreatic β-cell dysfunction and type 2 diabetes, and thus may represent common therapeutic targets for both diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739879 | PMC |
http://dx.doi.org/10.3390/ijms232315287 | DOI Listing |
JAMA Netw Open
January 2025
Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
Importance: Baseline cerebral microbleeds (CMBs) and APOE ε4 allele copy number are important risk factors for amyloid-related imaging abnormalities in patients with Alzheimer disease (AD) receiving therapies to lower amyloid-β plaque levels.
Objective: To provide prevalence estimates of any, no more than 4, or fewer than 2 CMBs in association with amyloid status, APOE ε4 copy number, and age.
Design, Setting, And Participants: This cross-sectional study used data included in the Amyloid Biomarker Study data pooling initiative (January 1, 2012, to the present [data collection is ongoing]).
JAMA Psychiatry
January 2025
Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Importance: Depressive symptoms are associated with cognitive decline in older individuals. Uncertainty about underlying mechanisms hampers diagnostic and therapeutic efforts. This large-scale study aimed to elucidate the association between depressive symptoms and amyloid pathology.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Department of Community Medicine, Vidhyadeep Homoeopathic Medical College and Research Centre, Vidhyadeep University, Anita, Surat, Gujarat, 394110, India.
Volatile oils (VOs), synonymously termed essential oils (EOs), are highly hydrophobic liquids obtained from aromatic plants, containing diverse organic compounds for example terpenes and terpenoids. These oils exhibit significant neuroprotective properties, containing antioxidant, anti-inflammatory, anti-apoptotic, glutamate activation, cholinesterase inhibitory action, and anti-protein aggregatory action, making them potential therapeutic agents in managing neurodegenerative diseases (NDs). VOs regulate glutamate activation, enhance synaptic plasticity, and inhibit oxidative stress through the stimulation of antioxidant enzymes.
View Article and Find Full Text PDFMol Divers
January 2025
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
Apigenin, a dietary flavonoid with notable anti-cancer properties, has emerged as a promising candidate for the treatment of neurodegenerative disorders, particularly Alzheimer's disease (AD). While extensively studied for its ability to modulate key molecular pathways in cancers, apigenin also exerts neuroprotective effects by reducing neuroinflammation, protecting neurons from oxidative stress, and enhancing neuronal survival and synaptic plasticity. This dual functionality makes apigenin an intriguing therapeutic option for diseases like AD, where kinase dysregulation plays a central role.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China.
The immune system has emerged as a major factor in the pathogenesis of Alzheimer's disease (AD). PANoptosis is a newly defined programmed cell death mechanism related to many inflammatory diseases. This study aimed to identify the differentially expressed (DE) PANoptosis-related genes with characteristics of immune dysregulation (PRGIDs) in AD using bioinformatics analysis of bulk RNA-seq and single-nuclei RNA sequencing (snRNA-seq) data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!