The life cycle of severe acute respiratory syndrome coronavirus 2 includes several steps that are supposedly mediated by liquid-liquid phase separation (LLPS) of the viral nucleocapsid protein (N) and genomic RNA. To facilitate the rational design of LLPS-targeting therapeutics, we modeled N-RNA biomolecular condensates in vitro and analyzed their sensitivity to several small-molecule antivirals. The model condensates were obtained and visualized under physiological conditions using an optimized RNA sequence enriched with N-binding motifs. The antivirals were selected based on their presumed ability to compete with RNA for specific N sites or interfere with non-specific pi-pi/cation-pi interactions. The set of antivirals included fleximers, 5'-norcarbocyclic nucleoside analogs, and perylene-harboring nucleoside analogs as well as non-nucleoside amphiphilic and hydrophobic perylene derivatives. Most of these antivirals enhanced the formation of N-RNA condensates. Hydrophobic perylene derivatives and 5'-norcarbocyclic derivatives caused up to 50-fold and 15-fold enhancement, respectively. Molecular modeling data argue that hydrophobic compounds do not hamper specific N-RNA interactions and may promote non-specific ones. These findings shed light on the determinants of potent small-molecule modulators of viral LLPS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738865PMC
http://dx.doi.org/10.3390/ijms232315281DOI Listing

Publication Analysis

Top Keywords

nucleoside analogs
12
perylene derivatives
12
phase separation
8
protein genomic
8
genomic rna
8
hydrophobic perylene
8
analogs perylene
4
derivatives
4
derivatives modulate
4
modulate phase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!