Peroxiredoxin 6 (Prdx6) is a multifunctional eukaryotic antioxidant enzyme. Mammalian Prdx6 possesses peroxidase activity against a wide range of organic and inorganic hydroperoxides, as well as exhibits phospholipase A2 (aiPLA2) activity, which plays an important role in the reduction of oxidized phospholipids and cell membrane remodeling. Exogenous Prdx6 has recently been shown to be able to penetrate inside the cell. We hypothesized that this entry may be due to the phospholipase activity of Prdx6. Experiments using exogenous Prdx6 in three cell lines (3T3, A549, RAW 264.7) demonstrated that it is the phospholipase activity that promotes its penetration into the cell. Overoxidation of Prdx6 led to a suppression of the peroxidase activity and a 3-to-4-fold growth of aiPLA2, which enhanced the efficiency of its transmembrane transport into the cells by up to 15 times. A mutant form of Prdx6-S32A with an inactivated phospholipase center turned out to be unable to enter the cells in both the reduced and oxidized state of the peroxidase active center. Previously, we have shown that exogenous Prdx6 has a significant radioprotective action. However, the role of phospholipase activity in the radioprotective effects of Prdx6 remained unstudied. Trials with the mutant Prdx6-S32A form, with the use of a total irradiation model in mice, showed a nearly 50% reduction of the radioprotective effect upon aiPLA2 loss. Such a significant decrease in the radioprotective action may be due to the inability of Prdx6-S32A to penetrate animal cells, which prevents its reduction by the natural intracellular reducing agent glutathione S-transferase (πGST) and lowers the efficiency of elimination of peroxides formed from the effect of ionizing radiation. Thus, phospholipase activity may play an important role in the reduction of oxidized Prdx6 and manifestation of its antioxidant properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738660PMC
http://dx.doi.org/10.3390/ijms232315265DOI Listing

Publication Analysis

Top Keywords

phospholipase activity
20
exogenous prdx6
12
prdx6
9
role phospholipase
8
activity
8
transmembrane transport
8
peroxidase activity
8
role reduction
8
reduction oxidized
8
radioprotective action
8

Similar Publications

Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.

View Article and Find Full Text PDF

GPLD1+ cancer stem cells contribute to chemotherapy resistance and tumor relapse in intestinal cancer.

J Biochem

January 2025

Laboratory of Anticancer Strategies, Advanced Research Initiative, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

Article Synopsis
  • Cancer stem cells (CSCs) are crucial in cancer growth and resistance, and recent research has identified GPLD1 as a marker for slowly cycling CSCs using a mouse intestinal cancer model.
  • Inhibiting GPLD1, particularly combined with the chemotherapy drug 5-fluorouracil, significantly reduces cancer cell viability and prevents tumor regrowth in organoids.
  • The study also reveals the role of GPLD1 in activating Wnt signaling and promoting epithelial-mesenchymal transition (EMT) through the cleavage of serine protease 8 (PRSS8), indicating that targeting GPLD1 could be a promising new treatment approach for colorectal cancer.
View Article and Find Full Text PDF

Current antiepileptic drugs are ineffective in one-third of patients with epilepsy; however, identification of genes involved in epilepsy can enable a precision medicine approach. Here, it is demonstrated that downregulating D-2-hydroxyglutarate dehydrogenase (D2HGDH) enhances susceptibility to epilepsy. Furthermore, its potential involvement in the seizure network through synaptic function modulation is investigated.

View Article and Find Full Text PDF

Investigating the Mechanisms Involved in Scopolamine-induced Memory Degradation.

Arch Razi Inst

June 2024

Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.

In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.

View Article and Find Full Text PDF

Segetalin B promotes bone formation in ovariectomized mice by activating PLD1/SIRT1 signaling to inhibit γ-secretase-mediated Notch1 overactivation.

J Steroid Biochem Mol Biol

December 2024

Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China. Electronic address:

Segetalin B (SB) has shown promise in mitigating osteoporosis in ovariectomized (OVX) mice, though its underlying mechanisms remain unclear. This study investigates how SB promotes bone formation through Phospholipase D1 (PLD1) activation in OVX models. In vitro, bone marrow-derived mesenchymal stem cells (BMSCs) from OVX mice were cultured for osteogenic differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!