Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-performance supramolecular polyimide systems were synthesized via a simple and innovative approach using two types of azo-chromophores, leading to concomitant special properties: high thermostability, the ability to be processed in the form of films with high flexibility, adequate morphological features, and good structuring capacity via phase mask ultraviolet (UV) laser irradiation, induced by the presence of the azo groups (-N=N-). The dimension and the anisotropy degree of the micro/nano patterns obtained on the surface of the flexible films (determined by atomic force microscopy) depend on the azo-dye type used in the supramolecular azopolyimide synthesis, which were higher when the azo-chromophore containing a -cyano group (-C≡N) was used. The molecular dynamics method, an excellent tool for an in-depth examination of the intermolecular interactions, was used to explain the morphological aspects. Energetic, dynamic and structural parameters were calculated for the two systems containing azo-chromophores, as well as for the pristine polymer system. It was highlighted that the van der Waals forces make a major contribution to the intermolecular interactions. The results from the combination of the dynamic analysis and the concentration profile explain the better mobility of the polyimide chains with a maximum content of azo groups in the configuration compared to the other systems. Taking all these data into account, the surfaces of the films can be tuned as required for the proposed applications, namely as substrates for flexible electronis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738230 | PMC |
http://dx.doi.org/10.3390/ijms232315223 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!