In recent years, extensive efforts have been made to develop clean energy technologies to replace fossil fuels to assist the struggle against climate change. One approach is to exploit the ability of bacteria and photosynthetic organisms to conduct external electron transport for electricity production in bio-electrochemical cells. In this work, we first show that the sea anemones and eggs of (brine shrimp) secrete redox-active molecules that can reduce the electron acceptor Cytochrome C. We applied 2D fluorescence spectroscopy and identified NADH or NADPH as secreted species. Finally, we broaden the scope of living organisms that can be integrated with a bio-electrochemical cell to the sea anemones group, showing for the first time that and eggs of can produce electrical current when integrated into a bio-electrochemical cell.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738779 | PMC |
http://dx.doi.org/10.3390/ijms232315001 | DOI Listing |
Bioprocess Biosyst Eng
January 2025
Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Batu Pahat, 86400, Parit Raja, Johor, Malaysia.
Bioelectrochemistry
December 2024
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
The concentration variation of luteinizing hormone (LH) regulates the cell cycle of oocyte meiosis and significantly affect the whole reproductive cycle. Sensitively quantifying the LH biomarker therefore plays an important role for reproductive disease diagnosis. By coupling a new low background catalytic redox recycling strategy with hybridization chain reaction (HCR), we propose a highly sensitive bio-electrochemical aptamer LH sensing method.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China. Electronic address:
Sediment Microbial Fuel Cell (SMFC) technology is an innovative approach to facilitate the degradation of sedimentary organic matter by electroactive microorganisms, transforming chemical energy into electrical energy and modulating the redox potential at the sediment-water interface, consequently controlling the release of endogenous pollutants. The synergistic effects of various environmental factors and intrinsic conditions can significantly impact SMFC performance. This review provides a comprehensive overview of SMFC development in research and application for water environment treatment and ecological remediation, a perspective rarely explored in previous reviews.
View Article and Find Full Text PDFBioresour Technol
December 2024
College of Civil Engineering, Fuzhou University, 350116, Fujian, China; College of Environment and Safety Engineering, Fuzhou University, 350116, Fujian, China. Electronic address:
Anaerobic ammonia oxidation (anammox), an energy-efficient technology for treating ammonium-rich wastewater, faces the challenge of antibiotic stress in sewage. This paper systematically evaluated the impact of antibiotics on anammox by considering both inhibitory effects and recovery duration. This review focused on cellular responses, including extracellular polymeric substances (EPS), quorum sensing (QS), and enzymes.
View Article and Find Full Text PDFEnviron Technol
November 2024
School of Energy and Environment, Southeast University, Nanjing, People's Republic of China.
The addition of exogenous quorum sensing signaling molecules significantly enhanced the degradation efficiency of antibiotics, such as chloramphenicol in bio-electrochemical systems (BESs). However, the effects and mechanisms by which AHLs addition in BES facilitated the removal of sulfamethoxazole (SMX) remained inadequately explored. This study systematically compared the electrochemical performance and SMX removal efficiency in BES under two conditions: with and without the addition of N-acyl-homoserine lactones (AHLs) signaling molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!