Because of the widespread acetaminophen usage and the danger of harmful overdosing effects, developing appropriate procedures for its quantitative and qualitative assay has always been an intriguing and fascinating problem. A quick, inexpensive, and environmentally friendly approach based on direct voltage anodic graphite rod exfoliation in the presence of inorganic salt aqueous solution ((NH)SO-0.3 M) has been established for the preparation of nitrogen-doped graphene (exf-NGr). The XRD analysis shows that the working material appears as a mixture of few (76.43%) and multi-layers (23.57%) of N-doped graphenes. From XPS, the C/O ratio was calculated to be 0.39, indicating a significant number of structural defects and the existence of multiple oxygen-containing groups at the surface of graphene sheets caused by heteroatom doping. Furthermore, the electrochemical performances of glassy carbon electrodes (GCEs) modified with exf-NGr for acetaminophen (AMP) detection and quantification have been assessed. The exf-NGr/GCE-modified electrode shows excellent reproducibility, stability, and anti-interfering characteristics with improved electrocatalytic activity over a wide detection range (0.1-100 µM), with a low limit for AMP detection (LOD = 3.03 nM). In addition, the developed sensor has been successfully applied in real sample analysis for the AMP quantification from different commercially available pharmaceutical formulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737486PMC
http://dx.doi.org/10.3390/ijms232314866DOI Listing

Publication Analysis

Top Keywords

nitrogen-doped graphene
8
amp detection
8
enhanced acetaminophen
4
acetaminophen electrochemical
4
electrochemical sensing
4
sensing based
4
based nitrogen-doped
4
graphene widespread
4
widespread acetaminophen
4
acetaminophen usage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!