The exploration of functional films using sustainable cellulose-based materials to replace plastics has been of much interest. In this work, two kinds of lignin nanoparticles (LNPs) were mixed with cellulose nanofibrils (CNFs) for the fabrication of composite films with biodegradable, flexible and ultraviolet blocking performances. LNPs isolated from -toluenesulfonic acid hydrolysis was easily recondensed and deposited on the surface of composite film, resulting in a more uneven surface; however, the composite film consisting of CNFs and LNPs isolated from maleic acid hydrolysis exhibited a homogeneous surface. Compared to pure CNF film, the composite CNF/LNP films exhibited higher physical properties (tensile strength of 164 MPa and Young's modulus of 8.0 GPa), a higher maximal weight loss temperature of 310 °C, and a perfect UVB blocking performance of 95.2%. Meanwhile, the composite film had a lower environmental impact as it could be rapidly biodegraded in soil and manmade seawater. Overall, our results open new avenues for the utilization of lignin nanoparticles in biopolymer composites to produce functional and biodegradable film as a promising alternative to petrochemical plastics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735624 | PMC |
http://dx.doi.org/10.3390/ijms232314863 | DOI Listing |
Sci Rep
December 2024
School of Electrical Engineering, Kookmin University, Seoul, 02707, Republic of Korea.
This study optimizes V and ΔV in amorphous indium-gallium-zinc-oxide (a-IGZO) field-effect transistors (FETs) by examining the influence of both channel length (L) and Ga composition. It was observed that as the ratio of In: Ga: Zn changed from 1:1:1 to 0.307:0.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:
Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Plastic and Cosmetic Surgery, Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Wuxi 214122, China. Electronic address:
The conversion of mechanical energy into electrical energy by triboelectric nanogenerators (TENG) has attracted attention in recent years, particularly in the field of wearable sensor. In this work, TEMPO-oxidized cellulose nanofibers (TOCNF) with carboxylate groups were compounded with MXene to serve as both the negative friction layer and the electrode in assembling a TENG with nylon. The synergistic effect between TOCNF and MXene was analyzed to disclose its influence on the performance of the as-prepared TENG.
View Article and Find Full Text PDFLangmuir
December 2024
Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).
View Article and Find Full Text PDFNano Lett
December 2024
Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.
Rutile GeO and related materials are attracting interest due to their ultrawide band gaps and potential for ambipolar doping in high-power electronic applications. This study examines the growth of rutile SnGeO films through oxygen-plasma-assisted hybrid molecular beam epitaxy (hMBE). The film composition and thickness are evaluated across a range of growth conditions, with the outcomes rationalized by using density functional theory calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!