Oxidative stress is associated with aging, cancers, and numerous metabolic and chronic disorders, and phenolic compounds are well known for their health-promoting role due to their free-radical scavenging activity. These phytochemicals could also exhibit pro-oxidant effects. Due to its bioactive phenolic secondary metabolites, (L.) Weber ex. F.H. Wigg () displays anticancer and antioxidant activities and has been used as a phytomedicine for thousands of years. The present work aims to analyze the properties of extract in canola oil (UBO). The UBO cytotoxicity on oral squamous cell carcinoma (OSCC) CLS-354 cell line and blood cell cultures was explored through complex flow cytometry analyses regarding apoptosis, reactive oxygen species (ROS) levels, the enzymatic activity of caspase 3/7, cell cycle, nuclear shrinkage (NS), autophagy (A), and synthesis of deoxyribonucleic acid (DNA). All these studies were concomitantly performed on canola oil (CNO) to evidence the interaction of lichen metabolites with the constituents of this green solvent used for extraction. The obtained data evidenced that UBO inhibited CLS-354 oral cancer cell proliferation through ROS generation (316.67 × 10), determining higher levels of nuclear shrinkage (40.12%), cell cycle arrest in G0/G1 (92.51%; G0 is the differentiation phase, while during G1 phase occurs preparation for cell division), DNA fragmentation (2.97%), and autophagy (62.98%) than in blood cells. At a substantially higher ROS level in blood cells (5250.00 × 10), the processes that lead to cell death-NS (30.05%), cell cycle arrest in G0/G1 (86.30%), DNA fragmentation (0.72%), and autophagy (39.37%)-are considerably lower than in CLS-354 oral cancer cells. Our work reveals the ROS-mediated anticancer potential of UBO through DNA damage and autophagy. Moreover, the present study suggests that UBO pharmacological potential could result from the synergism between lichen secondary metabolites and canola oil phytoconstituents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738295PMC
http://dx.doi.org/10.3390/ijms232314836DOI Listing

Publication Analysis

Top Keywords

canola oil
12
cell cycle
12
cell
10
oral squamous
8
squamous cell
8
cell carcinoma
8
secondary metabolites
8
nuclear shrinkage
8
cls-354 oral
8
oral cancer
8

Similar Publications

Identification of genetic loci and candidate genes regulating photosynthesis and leaf morphology through genome-wide association study in L.

Front Plant Sci

December 2024

State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.

Rapeseed ( L.) is a major agricultural crop with diverse applications, particularly in the production of seed oil for both culinary use and biodiesel. However, its photosynthetic efficiency, a pivotal determinant of yield, remains relatively low compared with other C plants such as rice and soybean, highlighting the necessity of identifying the genetic loci and genes regulating photosynthesis in rapeseed.

View Article and Find Full Text PDF

The cryopreservation of human spermatozoa is an integral part of cryobiology, aiming to support the in-vitro fertilization. The latter relies on the availability of as much as possible reproductively active spermatozoa, whose number after thawing decreases due to the accompanied freezing injury and the cytotoxicity of cryoprotectants. An innovative option to circumvent these obstacles is to make the freezing interface non-wettable, by coating it with rapeseed oil soot possessing intrinsic cryoprotective properties, delaying the ice formation and possibly providing identical rates of intracellular dehydration and extracellular crystallization.

View Article and Find Full Text PDF

A rare dominant allele determines seed coat color and improves seed oil content in .

Sci Adv

January 2025

College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • Yellow seed coat color (SCC) is linked to higher seed oil content (SOC) and lower seed lignocellulose content (SLC), but no dominant yellow SCC genes were previously known.
  • A dominant yellow SCC gene called N53-2 was identified in a study using a double haploid population from N53-2 and a black seed coat material, revealing thousands of expression quantitative trait loci (eQTLs) and specific trans-eQTL hotspots.
  • Transgenic experiments confirmed that the newly discovered allele produces yellow SCC seeds with significantly higher SOC and lower SLC, offering promising prospects for breeding rapeseed with desirable traits.
View Article and Find Full Text PDF

Emission rates for volatile organic compounds (VOCs) have been quantified from frying, spice and herb cooking, and cooking a chicken curry, using real-time selected-ion flow-tube mass spectrometry (SIFT-MS) for controlled, laboratory-based experiments in a semi-realistic kitchen. Emissions from 7 different cooking oils were investigated during the frying of wheat flatbread (puri). These emissions were dominated by ethanol, octane, nonane and a variety of aldehydes, including acetaldehyde, heptenal and hexanal, and the average concentration of acetaldehyde (0.

View Article and Find Full Text PDF

Facile synthesis of nitrogen self-doped carbon dots from rapeseed meal for highly sensitive fluorescence detection of baicalein.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, PR China; Hubei Longzhong Laboratory, Xiangyang 441000, Hubei, PR China. Electronic address:

The rapeseed meal, a type of residual by-product of rapeseed oil production was used as the precursor to prepare nitrogen self-doping carbon dots RM-CDs through an easy hydrothermal process. Thanks to the introduction of nitrogen element and oxygen-containing functional groups, RM-CDs had a fluorescence quantum yield of 18.6 %.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!