Aspalathin and Other Rooibos Flavonoids Trapped α-Dicarbonyls and Inhibited Formation of Advanced Glycation End Products In Vitro.

Int J Mol Sci

Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland.

Published: November 2022

The excessive dietary intake of simple sugars and abnormal metabolism in certain diseases contribute to the increased production of α-dicarbonyls (α-DCs), such as methylglyoxal (MGO) and glyoxal (GO), the main precursors of the formation of advanced glycation end products (AGEs). AGEs play a vital role, for example, in the development of cardiovascular diseases and diabetes. (Burman f.) R. Dahlgren (known as rooibos tea) exhibits a wide range of activities beneficial for cardio-metabolic health. Thus, the present study aims to investigate unfermented and fermented rooibos extracts and their constituents for the ability to trap MGO and GO. The individual compounds identified in extracts were tested for the capability to inhibit AGEs (with MGO or GO as a glycation agent). Ultra-high-performance liquid chromatography coupled with an electrospray ionization mass spectrometer (UHPLC-ESI-MS) was used to investigate α-DCs' trapping capacities. To evaluate the antiglycation activity, fluorescence measurement was used. The extract from the unfermented rooibos showed a higher ability to capture MGO/GO and inhibit AGE formation than did the extract from fermented rooibos, and this effect was attributed to a higher content of dihydrochalcones. The compounds detected in the extracts, such as aspalathin, nothofagin, vitexin, isovitexin, and eriodictyol, as well as structurally related phloretin and phloroglucinol (formed by the biotransformation of certain flavonoids), trapped MGO, and some also trapped GO. AGE formation was inhibited the most by isovitexin. However, it was the high content of aspalathin and its higher efficiency than that of metformin that determined the antiglycation and trapping properties of green rooibos. Therefore, , in addition to other health benefits, could potentially be used as an α-DC trapping agent and AGE inhibitor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738946PMC
http://dx.doi.org/10.3390/ijms232314738DOI Listing

Publication Analysis

Top Keywords

flavonoids trapped
8
formation advanced
8
advanced glycation
8
glycation products
8
fermented rooibos
8
age formation
8
rooibos
5
aspalathin rooibos
4
rooibos flavonoids
4
trapped α-dicarbonyls
4

Similar Publications

Structure identification of myricetin-phenylacetaldehyde adducts and their potential biological activities.

Food Res Int

January 2025

School of Food Science and Engineering, Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Modern Industrial Technology Research Institute, South China University of Technology, Zhongshan 528437, China. Electronic address:

Our previous research discovered that myricetin could effectively inhibit the formation of heterocyclic aromatic amines (HAAs) in cantonese baked foods by trapping phenylacetaldehyde to form adducts. However, the structure and biological activity of these adducts were still unknown. In this study, we identified two myricetin-phenylacetaldehyde adducts from cantonese mooncakes, BYQ-2 and BYQ-3, using pre-HPLC.

View Article and Find Full Text PDF

Flavan-3-ol oligomers (FLOs), including proanthocyanidins (PAs) and theasinensins (TSs), contribute greatly to the flavor and bioactivity of the tea beverage. Ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry has been widely used in profiling a wide range of compounds in tea. However, the detection and identification of FLOs with low concentration and high structural diversity remain meaningful yet challenging work.

View Article and Find Full Text PDF

Antioxidant effect, DNA-binding, and transport of the flavonoid acacetin influenced by the presence of redox-active Cu(II) ion: Spectroscopic and in silico study.

J Inorg Biochem

March 2025

Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic. Electronic address:

Acacetin (AC) is a natural polyphenol from the group of flavonoids. It is well established that the behavior of flavonoids depends on the presence of redox-active substances; therefore, we aim to investigate their biological activity following the interaction with Cu(II) ion. Our study demonstrates that AC can effectively bind Cu(II) ions, as confirmed by UV-Vis and EPR spectroscopy as well as DFT calculations.

View Article and Find Full Text PDF

Enhancing or protecting sperm motility has always been a pivotal approach to improving the ewe pregnancy rate. Sperm motility is highly susceptible to the immune status of the reproductive tract. Neutrophil extracellular traps (NETs) have been demonstrated to capture sperm and impair its motility in human, swine, and goat species.

View Article and Find Full Text PDF
Article Synopsis
  • A new method was created to trap certain chemical intermediates (benzopyrone-based ortho-quinone methides) using 3- and 5-amino pyrazoles or isoxazoles.
  • Various hybrid compounds were synthesized from natural phenolic Mannich bases and flavonoids, such as coumarin and isoflavone, with moderate to good yields depending on the position of the amino group.
  • Some of the resulting compounds, especially those with 5-aminoisoxazole, showed the ability to inhibit α-glucosidase, demonstrating potential biological activity with micromolar IC values.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!