Polymerizable choline-based ionic liquid (IL), i.e., [2-(methacryloyloxy)ethyl]-trimethylammonium (TMAMA/Cl¯), was functionalized by an ion exchange reaction with pharmaceutical anions, i.e., cloxacillin (CLX¯) and fusidate (FUS¯), as the antibacterial agents. The modified biocompatible IL monomers (TMAMA/CLX¯, TMAMA/FUS¯) were copolymerized with methyl methacrylate (MMA) to prepare the graft copolymers (19-50 mol% of TMAMA units) serving as the drug (co)delivery systems. The in vitro drug release, which was driven by the exchange reaction of the pharmaceutical anions to phosphate ones in PBS medium, was observed for 44% of CLX¯ (2.7 μg/mL) and 53% of FUS¯ (3.6 μg/mL) in the single systems. Similar amounts of released drugs were detected for the dual system, i.e., 41% of CLX¯ (2.2 μg/mL) and 33% of FUS¯ (2.0 μg/mL). The investigated drug ionic polymer conjugates were examined for their cytotoxicity by MTT test, showing a low toxic effect against human bronchial epithelial cells (BEAS-2B) and normal human dermal fibroblasts (NHDF) as the normal cell lines. The satisfactory drug contents and the release profiles attained for the well-defined graft polymers with ionically bonded pharmaceuticals in the side chains make them promising drug carriers in both separate and combined drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735495 | PMC |
http://dx.doi.org/10.3390/ijms232314731 | DOI Listing |
Surface active ionic liquids (SAILs), offer potential advantages for pharmaceutical applications. Given the low permeability of gabapentin, an antiepileptic drug, in the gastrointestinal tract as classified by the Biopharmaceutics Classification Systems (BCS), understanding the micellization behavior of SAILs is essential for developing effective drug delivery systems to improve gabapentin bioavailability. This study explores the micellization and thermophysical behavior of SAILs (2-hydroxyethyl)ammonium laurate [2-HEA][Lau], bis(2-hydroxyethyl)ammonium laurate [BHEA][Lau], and tris(2-hydroxyethyl)ammonium laurate [THEA][Lau] in the presence of aqueous gabapentin solution at varied temperatures through COSMO analysis, electrical conductivity and surface tension measurements.
View Article and Find Full Text PDFJ Chromatogr Sci
January 2025
Department of Chemistry, Ilam Branch, Islamic Azad University, Daneshjoo Blvd., Ilam 6931133145, Iran.
In the present study, metal-organic frameworks, MIL-101(Fe) and MIL-53(Al), were synthesized under solvothermal conditions and were characterized by Fourier transform infrared spectroscopy, X-ray energy diffraction spectroscopy and scanning electron microscopy. The synthesized metal-organic frameworks were utilized for the purpose of dispersive micro-solid phase extraction of sorafenib in both human plasma and wastewater, which was subsequently followed by high performance liquid chromatography with ultraviolet determination. Parameters affecting extraction efficacy including adsorbent amount, ionic strength, pH, type of elution solvent, adsorption and desorption time were optimized.
View Article and Find Full Text PDFSoft Matter
January 2025
Research Center for Macromolecules & Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan.
We developed a facile one-pot method for fabricating physical gels consisting of ultrahigh molecular weight (UHMW) polymers and highly concentrated lithium salt electrolytes. We previously reported physical gels formed from the entanglement of UHMW polymers by radical polymerisation in aprotic ionic liquids. In this study, we found that the molecular weight of methacrylate polymers formed by radical polymerisation increased with the concentration of lithium salts in the organic solvents.
View Article and Find Full Text PDFSci Rep
January 2025
Petrochemicals Department, Egyptian Petroleum Research Institute, 1 Ahmed El Zomor St., Nasr City, Cairo, 11727, Egypt.
Recovering the remaining oil after primary and secondary extraction methods poses a significant challenge. Enhanced oil recovery (EOR) techniques, which involve injecting fluids into reservoirs, aim to increase recovery rates. Ionic liquids, known for their adaptability, are emerging as promising agents in EOR, improving oil displacement by reshaping fluid properties and interacting with reservoir rocks.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
In this work, we investigate the development of polymer electrolytes for sodium batteries based on sulfonamide functional polymer nanoparticles (NaNPs). The synthesis of the polymer NaNPs is carried out by emulsion copolymerization of methyl methacrylate and sodium sulfonamide methacrylate in the presence of a crosslinker, resulting in particle sizes of 50 nm, as shown by electron microscopy. Then, gel polymer electrolytes are prepared by mixing polymer NPs and different organic plasticizers including carbonates, glymes, sulfolanes and ionic liquids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!