Identification and Characterization of Transcription Factors Involved in Geraniol Biosynthesis in .

Int J Mol Sci

Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.

Published: November 2022

Fragrance is an important characteristic of rose flowers and is largely determined by the terpenes. Rose has a unique NUDX1 (NUDIX HYDROLASES 1)-dependent monoterpene geraniol biosynthesis pathway, but little is known about its transcriptional regulation. In this study, we characterized two China rose () materials from the 'Old Blush' variety with contrasting aromas. We profiled the volatile metabolome of both materials, and the results revealed that geraniol was the main component that distinguishes the aroma of these two materials. We performed a comparative transcriptome analysis of the two rose materials, from which we identified the hydrolase RcNUDX1 as a key factor affecting geraniol content, as well as 17 transcription factor genes co-expressed with . We also determined that the transcription factor RcWRKY70 binds to four W-box motifs in the promoter of , repressing expression, based on yeast one-hybrid and transient dual-luciferase assays. These results provide important information concerning the transcriptional regulatory framework underlying the control of geraniol production in rose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739587PMC
http://dx.doi.org/10.3390/ijms232314684DOI Listing

Publication Analysis

Top Keywords

geraniol biosynthesis
8
rose materials
8
transcription factor
8
geraniol
5
rose
5
identification characterization
4
characterization transcription
4
transcription factors
4
factors involved
4
involved geraniol
4

Similar Publications

Geraniol modulates inflammatory and antioxidant pathways to mitigate intestinal ischemia-reperfusion injury in male rats.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.

Intestinal ischemia-reperfusion injury (IIR/I) significantly increases morbidity and mortality. This study examines the therapeutic effects of geraniol (GNL), which is noted for its anti-inflammatory and antioxidant properties, on intestinal I/R injury in rats. Forty-nine male Wistar-Albino rats were divided into seven groups.

View Article and Find Full Text PDF

Chongqing Old Rose is an ancient edible rose variety native to Chongqing, China, but is under-reported. Further evidence is required to fully establish its potential benefits. The complete metabolic profiles were examined for comparative analysis between the Old Rose and three rose cultivars.

View Article and Find Full Text PDF

Background: Geraniol 10-hydroxylase (G10H) is a cytochrome P450 monooxygenase involved in regulation, which is involved in the biosynthesis of monoterpene. However, G10H is not characterized at the enzymatic mechanism and regulatory function in .

Methods And Results: A gene related to the biosynthesis of monoterpenoid, geraniol 10-hydroxylase, has been cloned from the medicinal plant .

View Article and Find Full Text PDF

The production of medicinal plants under stressful environments offers an alternative to meet the requirements of sustainable agriculture. The action of mycorrhizal fungus; Funneliformis mosseae and zinc in stimulating growth and stress tolerance in medicinal plants is an intriguing area of research. The current study evaluated the combined use of nano-zinc and mycorrhizal fungus on the physiochemical responses of Dracocephalum moldavica under salinity stress.

View Article and Find Full Text PDF

Natural terpenes II. Concentration-dependent profile of effects on dynamic organization of biological and model membranes.

Biochem Biophys Res Commun

January 2025

Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT). Córdoba, Argentina. Electronic address:

Monoterpenes (MTs), the major constituents of plant essential oils, cover a broad spectrum of biological activities through their interaction with biomembranes. MTs are highly hydrophobic substances with a net electrical dipole, but are not clearly amphipathic. As a result, they aggregate at increasing concentrations in aqueous media, and in membrane environments their behavior changes from dynamics modulators to disruptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!