The addition of exogenous polyamines increases the production of antibiotic cephalosporin C (CPC) in high-yielding (HY) strain during fermentation on a complex medium. However, the molecular basis of this phenomenon is still unknown. In the current study, we developed a special synthetic medium on which we revealed the opposite effect of polyamines. The addition of 1,3-diaminopropane resulted in an increase in the yield of CPC by 12-15%. However, the addition of spermidine resulted in a decrease in the yield of CPC by 14-15% and accumulation of its metabolic pathway precursor, deacetylcephalosporin C (DAC); the total amount of cephems (DAC and CPC) was the same as after the addition of DAP. This indicates that spermidine, but not 1,3-diaminopropane, affects the final stage of CPC biosynthesis, associated with the acetylation of its precursor. In both cases, upregulation of biosynthetic genes from beta-lactam BGCs occurred at the same level as compared to the control; expression of transport genes was at the control level. The opposite effect may be due to the fact that N-acetylation is much more efficient during spermidine catabolism than for 1,3-diaminopropane. The addition of spermidine, but not 1,3-diaminopropane, depleted the pool of acetyl coenzyme A by more than two-fold compared to control, which could lead to the accumulation of DAC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738377PMC
http://dx.doi.org/10.3390/ijms232314625DOI Listing

Publication Analysis

Top Keywords

spermidine 13-diaminopropane
12
final stage
8
high-yielding strain
8
yield cpc
8
addition spermidine
8
compared control
8
spermidine
5
addition
5
cpc
5
13-diaminopropane opposite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!