Global warming and eutrophication are the main factors driving the development of cyanobacterial dominance in aquatic ecosystems. We used a model linking water temperature, oxygen saturation, concentrations of PO, NO, NH, total dissolved iron (TDFe), and SO to cyanobacteria to test the turnover patterns of cyanobacterial dominance of non-nitrogen-fixing (chroococcal species) and nitrogen-fixing (filamentous diazotrophic) species. Statistical analysis was performed using decision trees. The dominance patterns of the two morphologically and ecologically distinct cyanobacterial species were associated with different environmental factors. However, SO was the most important factor that explained whether non-nitrogen-fixing or nitrogen-fixing species would dominate. Other important factors were water temperature, phosphate concentration, and oxygen saturation. The model for dominance of non-nitrogen-fixing species used SO, PO, and water temperature (upper layers), and SO, the ratio of PO/NH, and oxygen saturation (bottom layers). In contrast, water temperature, SO, and NH in the upper layers and SO, NH, and water temperature in the bottom layers were used for the dominance of nitrogen-fixing species. The dominance of was explained by different sets of variables, indicating the presence of different strains of this species. The other cyanobacteria species showed dominance patterns that could be explained by one set of variables. As cyanobacterial blooms proliferate due to climate change, it is important to know which factors, in addition to phosphorus and nitrogen, are crucial for the mass development of the various cyanobacterial species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738033PMC
http://dx.doi.org/10.3390/ijerph192315980DOI Listing

Publication Analysis

Top Keywords

water temperature
20
cyanobacterial species
12
oxygen saturation
12
species
10
dominance
8
development cyanobacterial
8
cyanobacterial dominance
8
dominance non-nitrogen-fixing
8
dominance patterns
8
nitrogen-fixing species
8

Similar Publications

Objective: This study aimed to qualitatively study the main chemical components of apple peel in APORT, Kazakhstan, by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and to compare the components of apple peels with different provenances.

Methods: An ACQUITY UPLC HSS T3 (100 mm × 2.1 mm, 1.

View Article and Find Full Text PDF

Because of their uniform and regular channels, adjustable pore size, large surface area, controllable wall composition, high hydrothermal stability, ease of functional modification, and good accessibility of larger reactant molecules, mesoporous siliceous SBA-15 is of excellent catalyst carrier that is highly versatile and has been used extensively to prepare a variety of supported catalysts with ideal catalytic properties. In this study, we report the synthesis, characterization, and catalytic application of Cu-Ag/ SBA-15 nanoalloy catalysts towards the control of microorganisms in drinking water has been reported. The Cu-Ag/SBA-15 nanoalloy catalysts with different molar mass ratio of copper to silver (Cu:Ag = 1: 0, 0.

View Article and Find Full Text PDF

Preparation of curcumin submicron particles by supercritical antisolvent method with external adjustable annular gap nozzle.

Sci Rep

January 2025

Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), School of Mechanical Engineering, Shandong University, Jinan, 250061, People's Republic of China.

The supercritical antisolvent (SAS) method can effectively improve the bioavailability of poorly water-soluble drugs. However, the current supercritical equipment and processes were not fully developed, making industrialization difficult to achieve. Therefore, an externally adjustable annular gap nozzle and its supporting equipment were designed.

View Article and Find Full Text PDF

Irrigation rapidly expanded during the 20 century, affecting climate via water, energy, and biogeochemical changes. Previous assessments of these effects predominantly relied on a single Earth System Model, and therefore suffered from structural model uncertainties. Here we quantify the impacts of historical irrigation expansion on climate by analysing simulation results from six Earth system models participating in the Irrigation Model Intercomparison Project (IRRMIP).

View Article and Find Full Text PDF

Temperature seasonality regulates organic carbon burial in lake.

Nat Commun

January 2025

Laboratoire des Sciences du Climat et de l' Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France.

Organic carbon burial (OCB) in lakes, a critical component of the global carbon cycle, surpasses that in oceans, yet its response to global warming and associated feedbacks remains poorly understood. Using a well-dated biomarker sequence from the southern Tibetan Plateau and a comprehensive analysis of Holocene total organic carbon variations in lakes across the region, here we demonstrate that lake OCB significantly declined throughout the Holocene, closely linked to changes in temperature seasonality. Process-based land surface model simulations clarified the key impact of temperature seasonality on OCB in lakes: increased seasonality in the early Holocene saw warmer summers enhancing ecosystem productivity and organic matter deposition, while cooler winters improved organic matter preservation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!