DNA damage causes PARP1 activation in the nucleus to set up the machinery responsible for the DNA damage response. Here, we report that, in contrast to cytoplasmic PARPs, the synthesis of poly(ADP-ribose) by PARP1 opposes the formation of cytoplasmic mRNA-rich granules after arsenite exposure by reducing polysome dissociation. However, when mRNA-rich granules are pre-formed, whether in the cytoplasm or nucleus, PARP1 activation positively regulates their assembly, though without additional recruitment of poly(ADP-ribose) in stress granules. In addition, PARP1 promotes the formation of TDP-43- and FUS-rich granules in the cytoplasm, two RNA-binding proteins which form neuronal cytoplasmic inclusions observed in certain neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Together, the results therefore reveal a dual role of PARP1 activation which, on the one hand, prevents the early stage of stress granule assembly and, on the other hand, enables the persistence of cytoplasmic mRNA-rich granules in cells which may be detrimental in aging neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740212 | PMC |
http://dx.doi.org/10.3390/cells11233932 | DOI Listing |
NAR Cancer
March 2025
ProCURE, Catalan Institute of Oncology, L'Hospitalet del Llobregat, Barcelona 08908, Spain.
Alternative end-joining (alt-EJ) is an error-prone DNA repair pathway that cancer cells deficient in homologous recombination rely on, making them vulnerable to synthetic lethality via inhibition of poly(ADP-ribose) polymerase (PARP). Targeting alt-EJ effector DNA polymerase theta (POLθ), which synergizes with PARP inhibitors and can overcome resistance, is of significant preclinical and clinical interest. However, the transcriptional regulation of alt-EJ and its interactions with processes driving cancer progression remain poorly understood.
View Article and Find Full Text PDFACS Omega
March 2025
Macromolecular Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Hyderabad, Telangana 502284, India.
PARP2, along with PARP1, is involved in the maintenance of the genomic stability. PARP2 catalyzes the formation of poly(ADP-ribose) to recruit repair proteins at the site of DNA breaks. Single-strand (SSB) and double-strand (DSB) DNA breaks are bona fide stimulators of PARP2 catalytic activity.
View Article and Find Full Text PDFPharmacol Rep
March 2025
Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil.
Background: Gliomas, particularly glioblastomas, are highly aggressive cancers with rapid proliferation and poor prognosis. Current treatments have limited efficacy, highlighting the need for new therapeutic strategies. Eribulin mesylate, a synthetic macrocyclic ketone, has shown potential as an anticancer agent in several malignancies.
View Article and Find Full Text PDFCurr Cancer Drug Targets
March 2025
Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China.
Among the Poly(ADP-ribose) Polymerase (PARP) family in mammals, PARP1 is the first identified and well-studied member that plays a critical role in DNA damage repair and has been proven to be an effective target for cancer therapy. Here, we have reviewed not only the role of PARP1 in different DNA damage repair pathways, but also the working mech-anisms of several PARP inhibitors (PARPi), inhibiting Poly-ADP-ribosylation (PARylation) processing and PAR chains production to trap PARP1 on impaired DNA and inducing Tran-scription-replication Conflicts (TRCs) by inhibiting the PARP1 activity. This review has sys-tematically summarized the latest clinical application of six authorized PARPi, including olaparib, rucaparib, niraparib, talazoparib, fuzuloparib and pamiparib, in monotherapy and combination therapies with chemotherapy, radiotherapy, and immunotherapy, in different kinds of cancer.
View Article and Find Full Text PDFJ Transl Med
March 2025
School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People's Republic of China.
Lipopolysaccharide (LPS) is known to induce cell injury and mitochondrial dysfunction, which are pivotal in neuroinflammation and related disorders. Recent studies have demonstrated the potential of nicotinamide mononucleotide (NMN) and poly(ADP-ribose) polymerase-1 (PARP1) inhibitors to enhance mitochondrial function. However, the underlying mechanisms have not been fully elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!