Systematic Methods for Isolating High Purity Nuclei from Ten Important Plants for Omics Interrogation.

Cells

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Litchi Engineering Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.

Published: December 2022

Recent advances in developmental biology have been made possible by using multi-omic studies at single cell resolution. However, progress in plants has been slowed, owing to the tremendous difficulty in protoplast isolation from most plant tissues and/or oversize protoplasts during flow cytometry purification. Surprisingly, rapid innovations in nucleus research have shed light on plant studies in single cell resolution, which necessitates high quality and efficient nucleus isolation. Herein, we present efficient nuclei isolation protocols from the leaves of ten important plants including , rice, maize, tomato, soybean, banana, grape, citrus, apple, and litchi. We provide a detailed procedure for nucleus isolation, flow cytometry purification, and absolute nucleus number quantification. The nucleus isolation buffer formula of the ten plants tested was optimized, and the results indicated a high nuclei yield. Microscope observations revealed high purity after flow cytometry sorting, and the DNA and RNA quality extract from isolated nuclei were monitored by using the nuclei in cell division cycle and single nucleus RNA sequencing (snRNA-seq) studies, with detailed procedures provided. The findings indicated that nucleus yield and quality meet the requirements of snRNA-seq, cell division cycle, and likely other omic studies. The protocol outlined here makes it feasible to perform plant omic studies at single cell resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740283PMC
http://dx.doi.org/10.3390/cells11233919DOI Listing

Publication Analysis

Top Keywords

ten plants
12
studies single
12
single cell
12
cell resolution
12
flow cytometry
12
nucleus isolation
12
high purity
8
cytometry purification
8
cell division
8
division cycle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!