During meiotic maturation, accurate progression of meiosis is ensured by multiple protein kinases and by signal transduction pathways they are involved in. However, the mechanisms regulating the functions of phosphorylated proteins are unclear. Herein, we investigated the role of Pin1, a peptidyl-prolyl cis-trans isomerase family member that regulates protein functions by altering the structure of the peptide bond of proline in phosphorylated proteins in meiosis. First, we analyzed changes in the expression of Pin1 during meiotic maturation and found that although its levels were constant, its localization was dynamic in different stages of meiosis. Furthermore, we confirmed that the spindle rotates near the cortex when Pin1 is inhibited by juglone during meiotic maturation, resulting in an error in the extrusion of the first polar body. In Pin1 mice, frequent polar body extrusion errors were observed in ovulation, providing insights into the mechanism underlying the errors in the extrusion of the polar body. Although multiple factors and mechanisms might be involved, Pin1 functions in meiosis progression via actin- and microtubule-associated phosphorylated protein targets. Our results show that functional regulation of Pin1 is indispensable in oocyte production and should be considered while developing oocyte culture technologies for reproductive medicine and animal breeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739419 | PMC |
http://dx.doi.org/10.3390/cells11233772 | DOI Listing |
Adv Anat Embryol Cell Biol
January 2025
Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil.
In this chapter, we explore the multifaceted roles of extracellular vesicles (EVs) in ovarian biology, focusing on their contributions to folliculogenesis, oocyte competence, corpus luteum function, and immune response regulation. EVs, particularly those derived from follicular fluid (ffEVs), are crucial mediators of cell-to-cell communication within the ovarian follicle, influencing processes such as meiotic progression, stress response, and hormonal regulation. We review preexisting literature, highlighting key findings on the molecular cargo of EVs, such as miRNAs and proteins, and their involvement in regulating the function of the follicle cells.
View Article and Find Full Text PDFJ Dev Biol
November 2024
Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several () mouse alleles and in a mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived point-mutant knockin mouse () allele that expresses a mutant protein lacking transacetylase activity.
View Article and Find Full Text PDFMol Breed
January 2025
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China.
Unlabelled: Male sterility is an important trait for breeding and for the seedless fruit production in citrus. We identified one seedling which exhibiting male sterility and seedlessness (named hereafter), from a cross between two fertile parents, with sour orange () as seed parent and Ponkan mandarin () as pollen parent. Analysis using pollen viability staining, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) revealed that the mature pollen of the was aborted, displaying collapse and deformity.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Département des Sciences Animales, Université Laval, Quebec City, QC G1V 0A6, Canada.
In recent years, biomarkers in granulosa cells (GC) have been determined and associated in several species with oocyte maturation, in vitro fertilization success, and embryo development outcomes. The identification of biomarkers of oocyte competence can aid in improving assisted reproductive technologies (ARTs) in the southern white rhino (SWR). This study aimed to identify biomarkers present in SWR GC associated with oocytes that either did or did not mature in vitro.
View Article and Find Full Text PDFDev Biol
December 2024
Genetics Unit, Department of Pathology, Faculty of Medicine University of Porto (FMUP), 4200-319, Portugal; CINTESIS@RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal. Electronic address:
Human oocytes are highly specialized cells with the capacity to store and regulate mRNAs during oocyte maturation, in preparation for post-fertilization steps. Here we performed single-oocyte transcriptomic analysis of human oocytes in three meitoic maturation stages - Germinal Vesicle (GV; n = 6), Metaphase I (MI; n = 6) and Metaphase II (MII; n = 7). Single-oocyte transcriptomic analysis revealed that the total number of expressed genes progressively decreased from GV to MII stages, with 9660 genes being transcribed in GV, 8734 in MI and 5889 in MII.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!